留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变弯度结构的主动气动弹性机翼优化设计

雷朝辉 杨超 宋晨

雷朝辉,杨超,宋晨. 基于变弯度结构的主动气动弹性机翼优化设计[J]. 北京航空航天大学学报,2025,51(11):3862-3868 doi: 10.13700/j.bh.1001-5965.2023.0623
引用本文: 雷朝辉,杨超,宋晨. 基于变弯度结构的主动气动弹性机翼优化设计[J]. 北京航空航天大学学报,2025,51(11):3862-3868 doi: 10.13700/j.bh.1001-5965.2023.0623
LEI C H,YANG C,SONG C. Optimization design of active aeroelastic wing with variable camber structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3862-3868 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0623
Citation: LEI C H,YANG C,SONG C. Optimization design of active aeroelastic wing with variable camber structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3862-3868 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0623

基于变弯度结构的主动气动弹性机翼优化设计

doi: 10.13700/j.bh.1001-5965.2023.0623
基金项目: 

国家自然科学基金(11402013)

详细信息
    作者简介:

    雷朝辉等:基于变弯度结构的主动气动弹性机翼优化设计7

    通讯作者:

    E-mail:songchen@buaa.edu.cn

  • 中图分类号: V212.1

Optimization design of active aeroelastic wing with variable camber structure

Funds: 

National Natural Science Foundation of China (11402013)

More Information
  • 摘要:

    针对连续变弯度机翼,采用主动气动弹性机翼(AAW)技术,发展基于遗传算法的机翼结构综合优化设计方法。以结构质量最小化为目标,变弯度前/后缘等效偏转角、翼根弯矩和颤振速度为约束条件,在稳态滚转机动状态下对基于多个连续变弯度结构配平的小展弦比飞机缩比模型进行优化设计,并与传统单变弯度结构配平的设计方法进行对比。结果表明:变弯度前/后缘较传统舵面可提高34.71%的操纵效率,且采用多段变弯度前/后缘联合变形的AAW技术可充分利用机翼结构的柔性,从而有效降低机翼机动载荷,结构质量可减轻12.9%。

     

  • 图 1  变弯度机翼等效偏转角

    Figure 1.  Equivalent deflection angle of variable camber wing

    图 2  变形翼肋结构有限元模型变形分布

    Figure 2.  Deformation distribution of flexible rib’s structural finite element model

    图 3  优化设计对象结构有限元模型

    Figure 3.  Structural finite element model of optimization design object

    图 4  气动网格模型及变弯度结构分布

    Figure 4.  Aerodynamic mesh model and variable camber structure’s distribution

    图 5  变弯度前后缘模态

    Figure 5.  Modes of morphing leading and trailing edge

    图 6  TEO等效偏转角为5°时滚转角速度随来流速度的变化

    Figure 6.  Rolling angular velocity changing with flow velocity when equivalent deflection angle of TEO is 5 degrees

    图 7  不同形式TEO配平计算结果

    Figure 7.  Trim results using different types of TEO

    图 8  主动气动弹性机翼配平优化流程

    Figure 8.  Optimization procedure of AAW trim

    图 9  不同配平方案下配平等效偏转角随来流速度变化

    Figure 9.  Trim equivalent deflection angel of different trim scheme changing with flow velocity

    图 10  不同配平方案下翼根弯矩随来流速度变化

    Figure 10.  Wing root’s bending moment of different trim scheme changing with flow velocity

    图 11  主动气动弹性机翼结构综合优化流程

    Figure 11.  Integrated optimization procedure of AAW structure

    图 12  模型结构参数

    Figure 12.  Structure parameters of model

    图 13  模型结构质量优化过程

    Figure 13.  Optimization process of model structure mass

    图 14  结构参数优化结果

    Figure 14.  Optimization outcome of structural parameters

    表  1  优化变量取值范围

    Table  1.   Optimization variables range

    变量 最小值 最大值
    n1 −10 10
    n2 −10 10
    δLEO/(°) −10 10
    δTEO/(°) −10 10
    δTEI/(°) −10 10
    下载: 导出CSV

    表  2  约束变量取值范围

    Table  2.   Constrained variables range

    取值范围 Mwingroot/(N·m) n1 n2 δLEO/(°) δTEO/(°) δTEI/(°) Vf/(m·s−1)
    最小值 −10 −10 −10 −10 −10 −10 255
    最大值 10 10 10 10 10 10 10
    下载: 导出CSV

    表  3  优化结果

    Table  3.   Optimization outcome

    配平方案 δLEO/(°) δTEO/(°) δTEI/(°) Mwingroot/(N·m)
    TEO单独配平 0 −9.98 0 −9.3
    TEO/TEI/LEO联合配平 −8.5 −0.9 3.2 −8.5
    下载: 导出CSV
  • [1] 杨超, 陈桂彬, 邹丛青. 主动气动弹性机翼技术分析[J]. 北京航空航天大学学报, 1999, 25(2): 171-175.

    YANG C, CHEN G B, ZOU C Q. Analysis of active aeroelastic wing technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2): 171-175(in Chinese).
    [2] DAS S, VENKATRAMAN K, PADMANABHAN M A. A study of the active aeroelastic wing concept for a delta wing aircraft[C]//Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021: 0730.
    [3] PENDLETON E, GRIFFIN K, KEHOE M, et al. A flight research program for active aeroelastic wing technology[C]//Proceedings of the 37th Structure, Structural Dynamics and Materials Conference. Reston: AIAA, 1996: 1574.
    [4] BOEHM B, FLICK P, SANDERS B, et al. Static aeroelastic response predictions of the active aeroelastic wing (AAW) flight research vehicle[C]//Proceedings of the 19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001: 1372.
    [5] 杨超, 肖志鹏, 万志强. 主动气动弹性机翼多控制面配平综合优化设计[J]. 工程力学, 2011, 28(12): 244-249.

    YANG C, XIAO Z P, WAN Z Q. Integrated optimization design of multiple-control-surface trim for active aeroelastic wing[J]. Engineering Mechanics, 2011, 28(12): 244-249(in Chinese).
    [6] LIU H J, GAO X M, WANG X. Parametric active aeroelastic control of a morphing wing using the receptance method[J]. Journal of Fluids and Structures, 2020, 98: 103098. doi: 10.1016/j.jfluidstructs.2020.103098
    [7] ZHANG S, WANG Z J. Dynamic distributed morphing control of an aeroelastic wing for a small drone[J]. Journal of Aircraft, 2019, 56(6): 2324-2341. doi: 10.2514/1.C035182
    [8] CHANZY Q, KEANE A J. Analysis and experimental validation of morphing UAV wings[J]. The Aeronautical Journal, 2018, 122(1249): 390-408. doi: 10.1017/aer.2017.130
    [9] WANG X R, MKHOYAN T, MKHOYAN I, et al. Seamless active morphing wing simultaneous gust and maneuver load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(9): 1649-1662. doi: 10.2514/1.G005870
    [10] 杨永健, 宋晨, 张桢锴, 等. 变弯度后缘与常规舵面机翼的颤振主动抑制对比[J]. 航空工程进展, 2023, 14(3): 41-49.

    YANG Y J, SONG C, ZHANG Z K, et al. Comparison of morphing trailing edges and conventional control surfaces for active flutter suppression[J]. Advances in Aeronautical Science and Engineering, 2023, 14(3): 41-49(in Chinese).
    [11] 杨永健. 后缘连续变弯度机翼的阵风减缓研究[D]. 北京: 北京航空航天大学, 2023.

    YANG Y J. Gust alleviation research for the wing with continuous variable-camber trailing edge[D]. Beijing: Beihang University, 2023(in Chinese).
    [12] 张育鸣, 戴玉婷, 尉濡恺, 等. 变弯度柔性后缘机翼动响应减缓试验[J]. 北京航空航天大学学报, 2024, 50(10): 3239-3249.

    ZHANG Y M, DAI Y T, WEI R K, et al. Experiment on dynamic response alleviation of a wing with variable-camber flexible trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(10): 3239-3249(in Chinese).
    [13] RODDEN W P, JOHNSON E H. MSC. NASTRAN aeroelastic analysis user’s guide V68[M]. Los Angeles: The MacNeal-Schwendler Corporation, 1994: 35-65.
    [14] 雷朝辉, 杨超, 宋晨, 等. 连续变弯度后缘飞机的滚转机动载荷减缓[J]. 北京航空航天大学学报, 2024, 50(10): 3172-3182.

    LEI C H, YANG C, SONG C, et al. Rolling maneuver load alleviation of aircraft with continuously variable-camber trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(10): 3172-3182(in Chinese).
    [15] FORSTER E, SANDERS B, EASTEP F. Modelling and sensitivity analysis of a variable geometry trailing edge control surface[C]//Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003: 1807.
    [16] 张桢锴, 贾思嘉, 宋晨, 等. 柔性变弯度后缘机翼的风洞试验模型优化设计[J]. 航空学报, 2022, 43(3): 226071.

    ZHANG Z K, JIA S J, SONG C, et al. Optimum design of wind tunnel test model for compliant morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 226071(in Chinese).
    [17] 杨超, 吴志刚, 万志强, 等. 飞行器气动弹性原理[M]. 北京: 北京航空航天大学出版社, 2011: 70-80.

    YANG C, WU Z G, WAN Z Q, et al. Aeroelasticity principle of aircraft[M]. Beijing: Beihang University Press, 2011: 70-80(in Chinese).
    [18] 万志强, 杨超. 飞行器飞行载荷分析与气动弹性优化[M]. 北京: 航空工业出版社, 2021: 193-200.

    WAN Z Q, YANG C. Flight load analysis and aeroelastic optimization of aircraft[M]. Beijing: Aviation Industry Press, 2021: 193-200(in Chinese).
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  63
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 录用日期:  2023-12-01
  • 网络出版日期:  2023-12-14
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答