留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扭曲螺旋管中超临界RP-3航空煤油换热数值研究

王彦红 黄帅岭 东明 贾玉婷

王彦红,黄帅岭,东明,等. 扭曲螺旋管中超临界RP-3航空煤油换热数值研究[J]. 北京航空航天大学学报,2025,51(11):3709-3720 doi: 10.13700/j.bh.1001-5965.2023.0628
引用本文: 王彦红,黄帅岭,东明,等. 扭曲螺旋管中超临界RP-3航空煤油换热数值研究[J]. 北京航空航天大学学报,2025,51(11):3709-3720 doi: 10.13700/j.bh.1001-5965.2023.0628
WANG Y H,HUANG S L,DONG M,et al. Numerical study on heat transfer of supercritical RP-3 aviation kerosene in twisted spiral tubes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3709-3720 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0628
Citation: WANG Y H,HUANG S L,DONG M,et al. Numerical study on heat transfer of supercritical RP-3 aviation kerosene in twisted spiral tubes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3709-3720 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0628

扭曲螺旋管中超临界RP-3航空煤油换热数值研究

doi: 10.13700/j.bh.1001-5965.2023.0628
基金项目: 

国家自然科学基金(52106196);吉林省教育厅科技项目(JJKH20220100KJ)

详细信息
    作者简介:

    王彦红等:扭曲螺旋管中超临界RP-3航空煤油换热数值研究 13

    通讯作者:

    E-mail:wangyh.526@163.com

  • 中图分类号: V231.1

Numerical study on heat transfer of supercritical RP-3 aviation kerosene in twisted spiral tubes

Funds: 

National Natural Science Foundation of China (52106196); Science and Technology Project of Education Department of Jilin Province (JJKH20220100KJ)

More Information
  • 摘要:

    面向空-油换热器的通道结构改进问题,进行扭曲螺旋管中超临界RP-3航空煤油换热数值研究,着重探究煤油压力、螺旋节距和花瓣数目对换热的影响。讨论管壁温度和换热系数沿流动方向的变化情况,通过通道截面温度、主流流速、二次流流速和湍动能云图揭示壁温的周向分布特征和机制。基于旋流强度和二次流强度的轴向演变考察了旋流对换热的影响。与圆管比较,通过综合评价因子(PEC)表征扭曲螺旋管的增强换热效果。建立三瓣、四瓣、五瓣通道的换热关联式。结果表明:管壁温度达到拟临界温度后观察到高传热热阻类气膜引起的传热恶化问题,花瓣内出现2个非对称的壁温波形;提高煤油压力、增大螺旋节距、减少花瓣数目均使旋流效应减弱;PEC处于1.05~1.65的范围,煤油压力越高、螺旋节距越小、花瓣数目越少,越有利于提升扭曲螺旋管的综合换热作用。

     

  • 图 1  竖直扭曲螺旋管

    Figure 1.  Vertical twisted spiral tubes

    图 2  热物性随温度的变化情况[20]

    Figure 2.  Thermo-physical properties variations with temperature[20]

    图 3  扭曲螺旋管网格

    Figure 3.  Meshes of twist spiral tubes

    图 4  模型验证[22-23]

    Figure 4.  Model verification[22-23]

    图 5  压力对管壁温度、主流温度、换热系数沿流动方向变化的影响

    Figure 5.  Effect of pressure on wall temperature, bulk fluid temperature, and heat transfer coefficient variations along flow direction

    图 6  不同压力下壁温的周向分布情况

    Figure 6.  Circumferential distribution of wall temperature at different pressures

    图 7  不同压力下温度、主流速度、二次流速度、湍动能的分布情况

    Figure 7.  Temperature, bulk flow velocity, secondary flow velocity, and turbulent kinetic energy distributions at different pressures

    图 8  不同压力下二次流强度和旋流强度沿流动方向的变化情况

    Figure 8.  Secondary flow intensity and swirl intensity variations along flow direction at different pressures

    图 9  不同压力下PEC沿流动方向的变化情况

    Figure 9.  PEC variation along the flow direction at different pressures

    图 10  螺旋节距对管壁温度、主流温度、换热系数沿流动方向变化的影响

    Figure 10.  Effect of helical pitch on wall temperature, bulk fluid temperature, and heat transfer coefficient variations along flow direction

    图 11  不同螺旋节距下壁温的周向分布情况

    Figure 11.  Circumferential distribution of wall temperature at different helical pitches

    图 12  不同螺旋节距下温度、速度、二次流速度、湍动能分布情况

    Figure 12.  Temperature, bulk flow velocity, secondary flow velocity, and turbulent kinetic energy distributions at different helical pitches

    图 13  不同螺旋节距下二次流强度和旋流强度沿流动方向的变化情况

    Figure 13.  Secondary flow intensity and swirl intensity variations along flow direction at different helical pitches

    图 14  不同螺旋节距下PEC沿流动方向的变化情况

    Figure 14.  PEC variation along flow direction at different helical pitches

    图 15  花瓣数目对管壁温度、主流温度、换热系数沿流动方向变化的影响

    Figure 15.  Effect of petal numbers on variation of wall temperature, bulk fluid temperature, and heat transfer coefficient along flow direction

    图 16  不同花瓣数目下壁温的周向分布情况

    Figure 16.  Circumferential distribution of wall temperature at different petal numbers

    图 17  不同花瓣数目下温度、主流速度、二次流速度、湍动能分布情况

    Figure 17.  Temperature, bulk flow velocity, secondary flow velocity, and turbulent kinetic energy distributions at different petal numbers

    图 18  不同花瓣数目下二次流强度和旋流强度沿流动方向的变化情况

    Figure 18.  Secondary flow intensity and swirl intensity variations along flow direction at different petal numbers

    图 19  不同花瓣数目下PEC沿流动方向的变化情况

    Figure 19.  PEC variation along flow direction at different petal numbers

    图 20  努塞尔数误差分析

    Figure 20.  Error analysis of Nusselt number

    表  1  压力为3 MPa时分段线性拟合的热物性

    Table  1.   Thermophysical properties of a piecewise linear fitting at a pressure of 3 MPa

    ρ/(kg·m−3 cp/(kJ·kg−1·K−1 λ/(W·m−1·K−1 μ/10−4(Pa·s)
    −1.03T+300.22(T∈[295,515] K) 0.0047T−1.37(T∈[295,361] K) 0.00018T+0.054(T∈[295,409] K) −0.072T+21.32(T∈[295,324] K)
    −1.4T+720.89(T∈[515,619] K) 0.0098T−3.55(T∈[361,627] K) −0.00022T+0.092(T∈[409,659] K) −0.049T+15.9(T∈[324,350] K)
    −3T+1859.52(T∈[619,650] K) 0.051T−32.06(T∈[627,651] K) −0.000095T+0.063(T∈[659,680] K) −0.031T+10.69(T∈[350,389] K)
    −5.08T+3302.32(T∈[650,681] K) 0.23T−148.43(T∈[651,672] K) −0.0013T+0.88(T∈[680,721] K) −0.018T+6.99(T∈[389,428] K)
    −2.3T+1569.14(T∈[681,709] K) −0.18T+123.6(T∈[672,690] K) 0.000088T−0.063(T∈[721,814] K) −0.01T+4.44(T∈[428,500] K)
    −0.99T+702.92(T∈[709,754] K) −0.066T+45.37(T∈[690,712] K) 0.00011T−0.087(T∈[814,950] K) −0.0062T+3.12(T∈[500,646] K)
    −0.31T+233.59(T∈[754,799] K) −0.01T+7.4(T∈[712,751] K) 0.000092T−0.06(T∈[646,950] K)
    −0.082T+65.95(T∈[799,950] K) 0.0078T−5.87(T∈[751,821] K)
    0.0059T−4.88(T∈[821,950] K)
    下载: 导出CSV

    表  2  网格无关性分析

    Table  2.   Mesh independence analysis

    花瓣数 网格数量 Tout/K uout/(m·s−1)
    3 2.10×106 751.23 13.55
    3 3.25×106 754.62 14.23
    3 4.10×106 754.59 14.35
    4 2.25×106 775.24 12.45
    4 3.30×106 778.65 13.73
    4 4.20×106 778.89 13.54
    5 2.40×106 793.07 11.51
    5 3.45×106 795.17 12.93
    5 4.65×106 794.96 12.24
    下载: 导出CSV
  • [1] 杜长河, 高银峰, 李洪伟, 等. 高温高压工况下NASA C3X涡轮叶片旋流冷却和冲击冷却的性能对比研究[J]. 东北电力大学学报, 2022, 42(5): 55-64.

    DU C H, GAO Y F, LI H W, et al. Comparative study on swirl cooling and lmpingement cooling performance for NASA C3X vane under high parameter conditions[J]. Journal of Northeast Electric Power University, 2022, 42(5): 55-64(in Chinese).
    [2] 温奇, 裴鑫岩, 田鸿宇, 等. 空-油换热器对变循环航空发动机总体性能的影响研究[J]. 推进技术, 2023, 44(2): 2202035.

    WEN Q, PEI X Y, TIAN H Y, et al. Overall performance evaluation of variable cycle aero-engine based on air-fuel heat exchanger[J]. Journal of Propulsion Technology, 2023, 44(2): 2202035(in Chinese).
    [3] PU H, CHANG H T, WANG J Z, et al. Experimental investigation and analysis of convective heat transfer to supercritical pressure aviation kerosene RP-3 in vertical miniature tubes based on the pseudo-boiling theory[J]. Applied Thermal Engineering, 2023, 219: 119651. doi: 10.1016/j.applthermaleng.2022.119651
    [4] LEI Z L, BAO Z W. Experimental investigation on laminar heat transfer performances of RP-3 at supercritical pressure in the helical coiled tube[J]. International Journal of Heat and Mass Transfer, 2022, 185: 122326. doi: 10.1016/j.ijheatmasstransfer.2021.122326
    [5] LIU X Y, YANG Z Q, MIAO R P, et al. Experimental study on flow excursion instability of supercritical hydrocarbon fuel in scramjet regenerative cooling parallel channels[J]. Chinese Journal of Aeronautics, 2023, 36(1): 201-215. doi: 10.1016/j.cja.2022.09.024
    [6] 刘东洋, 乔柏铖, 闵敬春. 螺旋管空油换热器空气流动换热特性数值研究[J]. 工程热物理学报, 2023, 44(5): 1383-1389.

    LIU D Y, QIAO B C, MIN J C. Numerical study on air flow and heat transfer of a spiral tube air-fuel heat exchanger[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1383-1389(in Chinese).
    [7] LIU P H, WANG R T, LIU S B, et al. Experimental study on the thermal-hydraulic performance of a tube-in-tube helical coil air–fuel heat exchanger for an aero-engine[J]. Energy, 2023, 267: 126626. doi: 10.1016/j.energy.2023.126626
    [8] WEN J, HUANG H R, FU Y C, et al. Heat transfer performance of aviation kerosene RP-3 flowing in a vertical helical tube at supercritical pressure[J]. Applied Thermal Engineering, 2017, 121: 853-862. doi: 10.1016/j.applthermaleng.2017.04.055
    [9] FU Y C, WEN J, TAO Z, et al. Experimental research on convective heat transfer of supercritical hydrocarbon fuel flowing through U-turn tubes[J]. Applied Thermal Engineering, 2017, 116: 43-55. doi: 10.1016/j.applthermaleng.2017.01.058
    [10] 赵晋杰, 雷志良, 鲍泽威, 等. S型管内超临界航空煤油的裂解与结焦研究[J]. 推进技术, 2021, 42(3): 692-700.

    ZHAO J J, LEI Z L, BAO Z W, et al. Pyrolysis and coking deposition of aviation kerosene under supercritical conditions in S-bend tubes[J]. Journal of Propulsion Technology, 2021, 42(3): 692-700(in Chinese).
    [11] 王彦红, 李雨健, 李洪伟, 等. S型通道内超临界RP-3航空煤油换热特性研究[J]. 工程热物理学报, 2022, 43(9): 2442-2450.

    WANG Y H, LI Y J, LI H W, et al. Research on heat transfer characteristics of supercritical RP-3 aviation kerosene in a S-shaped channel[J]. Journal of Engineering Thermophysics, 2022, 43(9): 2442-2450(in Chinese).
    [12] 王彦红, 李雨健, 李洪伟, 等. 超临界压力下竖直蛇形管内RP-3燃料换热特性数值研究[J]. 推进技术, 2022, 43(12): 267-275.

    WANG Y H, LI Y J, LI H W, et al. Numerical research on heat transfer characteristics of supercritical-pressure RP-3 fuel in a vertical serpentine tube[J]. Journal of Propulsion Technology, 2022, 43(12): 267-275(in Chinese).
    [13] XU K K, SUN X, MENG H. Conjugate heat transfer, endothermic fuel pyrolysis and surface coking of aviation kerosene in ribbed tube at supercritical pressure[J]. International Journal of Thermal Sciences, 2018, 132: 209-218. doi: 10.1016/j.ijthermalsci.2018.06.008
    [14] 黄世璋, 朱强华, 高效伟. 碳氢燃料在波纹管内的超临界裂解传热特性[J]. 推进技术, 2019, 40(1): 95-106.

    HUANG S Z, ZHU Q H, GAO X W. Supercritical heat transfer characteristics of hydrocarbon fuel with pyrolysis in corrugated tubes[J]. Journal of Propulsion Technology, 2019, 40(1): 95-106(in Chinese).
    [15] 苏桐, 刘滟钰, 张咏鸥. 超临界LNG在螺旋形微通道中的流动传热特性[J]. 舰船科学技术, 2022, 44(10): 61-67. doi: 10.3404/j.issn.1672-7649.2022.10.012

    SU T, LIU Y Y, ZHANG Y O. Flow and heat transfer of supercritical LNG in spiral microchannel[J]. Ship Science and Technology, 2022, 44(10): 61-67(in Chinese). doi: 10.3404/j.issn.1672-7649.2022.10.012
    [16] TANG X Y, ZHU D S. Experimental and numerical study on heat transfer enhancement of a rectangular channel with discontinuous crossed ribs and grooves[J]. Chinese Journal of Chemical Engineering, 2012, 20(2): 220-230. doi: 10.1016/S1004-9541(12)60382-6
    [17] MARYAN F N, HOSSEIM T R, MOUSA F. Analysis of a twisted double-pipe heat exchanger with lobed cross-section as a novel heat storage unit for solar collectors using phase-change material[J]. International Communications in Heat and Mass Transfer, 2021, 128: 105598. doi: 10.1016/j.icheatmasstransfer.2021.105598
    [18] LIAW K L, KURNIA J C, PUTRA Z A, et al. Enhanced turbulent convective heat transfer in helical twisted Multilobe tubes[J]. International Journal of Heat and Mass Transfer, 2023, 202: 123687. doi: 10.1016/j.ijheatmasstransfer.2022.123687
    [19] LIAW K L, KURNIA J C, SASMITO A P. Laminar convective heat transfer in helical twisted multilobe tubes[J]. Case Studies in Thermal Engineering, 2022, 39: 102459. doi: 10.1016/j.csite.2022.102459
    [20] FU Y C, HUANG H R, WEN J, et al. Experimental investigation on convective heat transfer of supercritical RP-3 in vertical miniature tubes with various diameters[J]. International Journal of Heat and Mass Transfer, 2017, 112: 814-824. doi: 10.1016/j.ijheatmasstransfer.2017.05.008
    [21] WANG Y H, LU Y N, LI S F, et al. Numerical study on non-uniform heat transfer deterioration of supercritical RP-3 aviation kerosene in a horizontal tube[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1542-1557. doi: 10.1016/j.cjche.2020.03.037
    [22] WEN J, HUANG H R, JIA Z X, et al. Buoyancy effects on heat transfer to supercritical pressure hydrocarbon fuel in a horizontal miniature tube[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1173-1181. doi: 10.1016/j.ijheatmasstransfer.2017.08.116
    [23] NAJAFIAN M, ESMAEILI A, NIKKHOO A, et al. Numerical study of heat transfer and fluid flow of supercritical water in twisted spiral tubes[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(3): 6433-6455. doi: 10.1080/15567036.2022.2098421
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  37
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28
  • 录用日期:  2024-01-10
  • 网络出版日期:  2024-10-29
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答