Reachability evaluation method for ballistic missile based on extended boundary method
-
摘要:
考虑6自由度多弹头弹道导弹模型,针对诸元计算中各分导弹头目标的可达性判定问题,提出一种新型的可达性快速判定方法。建立以俯仰偏航程序角控制的导弹分导模型,以较小程序角差值顺序打靶拟合导弹的实际可达区域并分析其特点。针对可达区域与目标点的几何关系,引入射线法设计了可编程化的可达性判定方法。在此基础上,设计了基于带方向边界扩展思想的可达区域动态拟合方法,并研究不可达区域动态扩展原理,实现了多目标可达性快速判定。通过仿真实验,验证了所提方法在可达性判定问题中具有更快的速度和更高的精度。
Abstract:A new rapid reachability evaluation method is proposed for the multiple-warhead ballistic missile to solve the problem of rapid reachability decisions for MIRVs(Multiple Independently Targetable Re-entry Vehicle) in ballistic data calculation. Firstly, the MIRV model, controlled by the pitching and yawing angle of the missile, is established to fit the actual reachability area and analyze its characteristics. The second is a programmable method that uses the enhanced Ray method to determine the geometrical link between targets and reachable areas. Based on this, an integrated dynamical fit algorithm is shown and the method of expanding inaccessible region for reachability evaluation based on the idea of expanding boundary to targets is proposed in order to achieve the quick computation of multi-target's reachability. Finally, MATLAB simulation results verify the quickness and accuracy of the reachability evaluation in combination with the proposed decision algorithm.
-
表 1 民兵-III型导弹参数
Table 1. Missile parameters of Minuteman III
发动机 发动机
质量/kg推进剂
质量/kg直径/m 推力/kN 工作
时间/s一级发动机 22680 22080 1.67 912.0 61.6 二级发动机 7050 6246 1.32 270.0 65.2 三级发动机 3650 3317 1.32 157.5 59.6 表 2 扩展边界各阶段时间
Table 2. Duration of the phases of different expansion boundary stages
计算阶段 扩展弹道
计算/s不可达
判定/s可达区扩展
操作/s射线法可达性
判定/s初始可达区域 11.996227 0.035478 0.001861 第1次扩展 4.629599 0.003335 0.000450 0.001147 第2次扩展 4.334603 0.000415 0.000094 0.000544 第3次扩展 4.279724 0.000271 0.000055 0.000463 第4次扩展 4.848804 0.001997 0.000133 0.000451 表 3 扩展效率
Table 3. Expanded efficiency
计算阶段 $ \dfrac{拟合区}{实际可达区}\bigg/ $% 弹道计算
总次数等效边界打靶拟合
计算弹道次数初始可达区域 70.59 6 6 扩展1次 92.02 7 ≈11 扩展2次 97.97 8 ≈17 扩展3次 99.49 9 ≈33 扩展4次 99.87 10 ≈65 -
[1] KRISTENSEN H M, NORRIS R S. Chinese nuclear forces, 2015[J]. Bulletin of the Atomic Scientists, 2015, 71(4): 77-84. doi: 10.1177/0096340215591247 [2] GREEN B R, LONG A. The Geopolitical Origins of US Hard-Target-Kill Counterforce Capabilities and MIRVs[EB/OL]. (2016-07-28)[2023-08-09]. https://www.stimson.org/2016/geopolitical-origins-us-hard-target-kill-counterforce-capabilities-and-mirvs/. [3] LU P, XUE S B. Rapid generation of accurate entry landing footprints[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 756-767. doi: 10.2514/1.46833 [4] 韦文书, 荆武兴, 高长生. 机动发射的弹道导弹飞行诸元的快速计算[J]. 哈尔滨工业大学学报, 2012, 44(11): 7-12.WEI W S, JING W X, GAO C S. A rapid method for flight program design of the ballistic missile launched on mobile platform[J]. Journal of Harbin Institute of Technology, 2012, 44(11): 7-12(in Chinese). [5] LIU L X, LIU Y, SHI G X. Evaluation of quality of teaching based on BP neural network[J]. Journal of Chemical & Pharmaceutical Research, 2014, 42(8): 1278-1281. [6] 鲜勇, 李少朋, 李振华, 等. BP神经网络制导弹道导弹的诸元数据制备方法[J]. 飞行力学, 2015, 33(6): 547-550.XIAN Y, LI S P, LI Z H, et al. An approach to data preparation of closed loop guidance based on BP neural network[J]. Flight Dynamics, 2015, 33(6): 547-550(in Chinese). [7] 徐劲祥, 祁载康, 林德福, 等. 火箭炮射表编拟及发射诸元快速装定研究[J]. 南京理工大学学报(自然科学版), 2004, 28(3): 333-336.XU J X, QI Z K, LIN D F, et al. Study on the compilation of firing tables and rapid firing elements binding of rocket gun system[J]. Journal of Nanjing University of Science and Technology, 2004, 28(3): 333-336(in Chinese). [8] SUN P Y, ZHU H G, NING X. A cooperative interception allocation method faced on 3D reachable area prediction based on deep neural network[C]// Proceedings of the 2022 International Conference on Autonomous Unmanned Systems. Singapore: Springer Nature Singapore, 2023: 867-877. [9] DIAO Y, MU R J, GUAN Y Z, et al. Boost-phase trajectory planning with the nonregular reachable area constraints[J]. International Journal of Aerospace Engineering, 2022(1): 9443050. [10] 刘刚, 尤志鹏, 郑宏涛. 一种预测校正制导中攻角剖面的在线规划方法[J]. 航天控制, 2020, 38(4): 14-21. doi: 10.3969/j.issn.1006-3242.2020.04.003LIU G, YOU Z P, ZHENG H T. An online optimization method of the attack angle in predictor-corrector guidance[J]. Aerospace Control, 2020, 38(4): 14-21(in Chinese). doi: 10.3969/j.issn.1006-3242.2020.04.003 [11] 贾飞达, 韩宏伟, 温昶煊. 基于上升轨迹可达范围的目标拦截发射窗口计算[J]. 宇航学报, 2022, 43(4): 403-412. doi: 10.3873/j.issn.1000-1328.2022.04.002JIA F D, HAN H W, WEN C X. Calculation of target interception launch window for target interception based on the reachable domain of ascending trajectory[J]. Journal of Astronautics, 2022, 43(4): 403-412(in Chinese). doi: 10.3873/j.issn.1000-1328.2022.04.002 [12] 李彬. 脉冲推力轨道机动可达性方法研究[D]. 长沙: 国防科学技术大学, 2018.LI B. Research on impulse thrust orbital maneuver accessibility method [D]. Changsha: National University of Defense Technology, 2018(in Chinese). [13] 郑伟, 汤国建. 弹道导弹零射程线及其应用[J]. 飞行力学, 2008, 26(4): 73-76.ZHENG W, TANG G J. Zero-range orientation and applications of ballistic missile[J]. Flight Dynamics, 2008, 26(4): 73-76(in Chinese). [14] 吴楠, 王锋, 赵敏, 等. 高超声速滑翔再入飞行器的可达区快速预测[J]. 国防科技大学学报, 2021, 43(1): 1-6. doi: 10.11887/j.cn.202101001WU N, WANG F, ZHAO M, et al. Fast prediction for footprint of hypersonic glide reentry vehicle[J]. Journal of National University of Defense Technology, 2021, 43(1): 1-6(in Chinese). doi: 10.11887/j.cn.202101001 [15] 赵泽端, 崔平远, 朱圣英. 火星大气进入段纵向可达区生成的解析同伦法[J]. 宇航学报, 2019, 40(9): 1024-1033. doi: 10.3873/j.issn.1000-1328.2019.09.006ZHAO Z D, CUI P Y, ZHU S Y. An analytical homotopic method to generate the reachable longitudinal area for Mars entry[J]. Journal of Astronautics, 2019, 40(9): 1024-1033(in Chinese). doi: 10.3873/j.issn.1000-1328.2019.09.006 [16] 李瑜, 崔乃刚. 洲际助推-滑翔导弹可达区域优化[J]. 战术导弹技术, 2010(1): 40-44,52. doi: 10.3969/j.issn.1009-1300.2010.01.009LI Y, CUI N G. Reachable domain optimization for intercontinental boost-glide missile[J]. Tactical Missile Technology, 2010(1): 40-44,52(in Chinese). doi: 10.3969/j.issn.1009-1300.2010.01.009 [17] 陈克俊, 刘鲁华, 孟云鹤. 远程火箭飞行动力学与制导[M]. 北京: 国防工业出版社, 2014: 2-88.CHEN K J, LIU L H, MENG Y H. Launch vehicle flight dynamics and guidance[M]. Beijing: National Defense Industry Press, 2014: 2-88(in Chinese). [18] 中国运载火箭技术研究院十九所. 民兵洲际弹道导弹[M]. 北京: 宇航出版社, 1997.China Academy of Launch Vehicle Technology Nineteenth Institute. Minuteman intercontinental ballistic missile [M]. Beijing: Aerospace Press, 1997(in Chinese). [19] 江 平, 刘民士. 射线法判断点与包含简单曲线多边形关系的完善[J]. 测绘科学, 2009, 34(5): 220-222.JIANG P, LIU M S. Improved ray method to judge the relation of point and polygon including simple curve[J]. Science of Surveying and Mapping, 2009, 34(5): 220-222(in Chinese). [20] 李楠, 肖克炎. 一种改进的点在多边形内外判断算法[J]. 计算机工程, 2012, 38(5): 30-34. doi: 10.3969/j.issn.1000-3428.2012.05.007LI N, XIAO K Y. Improved judgment algorithm of point in-out polygon[J]. Computer Engineering, 2012, 38(5): 30-34(in Chinese). doi: 10.3969/j.issn.1000-3428.2012.05.007 [21] 张煜, 王楠, 陈璟, 等. 空地多目标攻击中制导炸弹可投放区计算研究[J]. 兵工学报, 2011, 32(12): 1474-1480.ZHANG Y, WANG N, CHEN J, et al. Research on launch acceptable region for guided bombs in air-to-ground multi-target attack[J]. Acta Armamentarii, 2011, 32(12): 1474-1480(in Chinese). -


下载: