留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多目标RCS耦合特性的试验研究

张世健 李尧尧 曹成 陈凌

张世健,李尧尧,曹成,等. 多目标RCS耦合特性的试验研究[J]. 北京航空航天大学学报,2025,51(11):3926-3933 doi: 10.13700/j.bh.1001-5965.2023.0633
引用本文: 张世健,李尧尧,曹成,等. 多目标RCS耦合特性的试验研究[J]. 北京航空航天大学学报,2025,51(11):3926-3933 doi: 10.13700/j.bh.1001-5965.2023.0633
ZHANG S J,LI Y Y,CAO C,et al. Experimental study of multi-target RCS coupling characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3926-3933 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0633
Citation: ZHANG S J,LI Y Y,CAO C,et al. Experimental study of multi-target RCS coupling characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3926-3933 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0633

多目标RCS耦合特性的试验研究

doi: 10.13700/j.bh.1001-5965.2023.0633
基金项目: 

国家自然科学基金(62293495)

详细信息
    通讯作者:

    E-mail:liyaoyao@buaa.edu.cn

  • 中图分类号: O571.55+3;O212.6

Experimental study of multi-target RCS coupling characteristics

Funds: 

National Natural Science Foundation of China (62293495)

More Information
  • 摘要:

    针对空中多目标进行位置与姿态调整时,影响各目标之间的电磁耦合特性的问题,定义了一种基于雷达散射截面(RCS)统计特性的耦合特性表示方法——耦合量,以仿真试验与内场测量相结合的方法,对双机编队的电磁耦合特性变化规律进行研究。获取了一定空间范围内部分编队因素与电磁耦合特性之间的影响关系,验证了耦合量表示方法的有效性。研究结果可以为多目标RCS耦合性能的评估与优化提供研究思路,具有工程应用价值。

     

  • 图 1  F16战斗机几何结构

    Figure 1.  F16 fighter jet geometry

    图 2  双机编队

    Figure 2.  Two-aircraft formation

    图 3  双机编队随左右间距变化时的动态RCS分布

    Figure 3.  Dynamic RCS distribution of two-aircraft formation with left and right spacing

    图 4  双机编队随前后间距变化时的动态RCS分布

    Figure 4.  Dynamic RCS distribution of two-aircraft formation with front and back spacing

    图 5  双机编队随上下间距变化时的动态RCS分布

    Figure 5.  Dynamic RCS distribution of two-aircraft formation with upper and lower spacing

    图 6  双机编队在3种编队方式下的耦合量变化趋势

    Figure 6.  The trend of C changes for two-aircraft formation under 3 formation modes

    图 7  1/30缩比模型

    Figure 7.  1/30 scale model

    图 8  双机编队RCS测量与仿真数据对比

    Figure 8.  Comparison of two-aircraft formation RCS measurement and simulation data

    图 9  耦合量的测量与仿真数据对比

    Figure 9.  Measurement of C compared with simulation data

    图 10  双机编队RCS测量正交试验

    Figure 10.  Orthogonal experiment of RCS measurement for two-aircraft formation

    图 11  左右间距与耦合量关系

    Figure 11.  The relationship between the left and right spacing and C

    图 12  前后间距与耦合量关系

    Figure 12.  The relationship between the front and back spacing and C

    图 13  上下间距与耦合量关系

    Figure 13.  The relationship between the upper and lower spacing and C

    图 14  横滚角组合与耦合量关系

    Figure 14.  The relationship between the cross roll angle combination and C

    图 15  极化方式与耦合量关系

    Figure 15.  The relationship between the polarisation and C

    表  1  不同编队方式设置

    Table  1.   Different formation methods settings

    编队方式调整参数/m固定参数/m步进/m
    方式1/左右间距$ 0 \leqslant \Delta {D_x} \leqslant 45 $${D_x} = 12.6,{D_y} = 0,{D_{\textit{z}}} = 0$0.30
    方式2/前后间距$ 0 \leqslant \Delta {D_y} \leqslant 45 $${D_x} = 15.0,{D_y} = 0,{D_{\textit{z}}} = 0$0.30
    方式3/上下间距$ 0 \leqslant \Delta {D_{\textit{z}}} \leqslant 45 $${D_x} = 15.0,{D_y} = 0,{D_{\textit{z}}} = 0$0.30
    下载: 导出CSV

    表  2  试验因素编码

    Table  2.   Codes of experimental factors

    水平 左右
    间距/m
    前后
    间距/m
    上下
    间距/m
    横滚角
    组合/(°)
    极化
    方式
    1 0.43 0.00 0.00 0,0 HH
    2 0.51 0.20 0.12 30,30 VV
    3 0.58 0.35 0.24 −30,30
    4 0.66 0.50 0.36 30,−30
    下载: 导出CSV

    表  3  试验计划

    Table  3.   Experimental plan

    试验号 水平 y1/dB y2/dB
    A B C D E F G
    1 1 1 1 1 1 1 1 −1.82 −2.10
    2 1 2 2 2 1 2 2 0.49 −0.22
    3 1 3 3 3 2 1 2 −0.91 −0.80
    4 1 4 4 4 2 2 1 0.04 0.14
    5 2 1 2 3 2 1 1 −0.92 −1.63
    6 2 2 1 4 2 2 2 −1.12 −0.66
    7 2 3 4 1 1 1 2 0.70 0.61
    8 2 4 3 2 1 2 1 0.41 −0.03
    9 3 1 3 4 1 1 2 2.17 1.11
    10 3 2 4 3 1 2 1 0.68 0.03
    11 3 3 1 2 2 1 1 −1.17 −1.00
    12 3 4 2 1 2 2 2 0.25 0.02
    13 4 1 4 2 2 1 2 0.71 −0.55
    14 4 2 3 1 2 2 1 0.01 0.38
    15 4 3 2 4 1 1 1 0.16 −1.00
    16 4 4 1 3 1 2 2 −0.75 −1.17
    下载: 导出CSV

    表  4  耦合量极差分析

    Table  4.   Range analysis of C

    编码 K1 K2 K3 K4 k1 k2 k3 k4 R
    A −5.17 −2.65 1.58 −0.31 −0.65 −0.33 0.20 −0.04 0.84
    B −3.03 −0.41 −2.51 −0.59 −0.38 −0.052 −0.31 −0.07 0.33
    C −8.79 −2.45 2.34 2.36 −1.10 −0.31 0.29 0.29 1.39
    D −2.44 −1.38 −4.47 1.75 −0.31 −0.17 −0.56 0.22 0.78
    E 1.17 −7.71 0.07 −0.48 0.56
    下载: 导出CSV

    表  5  耦合量方差分析

    Table  5.   Variance analysis of C

    因素 平方和 自由度 均方 F P
    A 3.64 3 1.21 3.95 0.03
    B 0.82 3 0.27 0.89 0.47
    C 10.37 3 3.46 11.26 0.00
    D 2.44 3 0.81 2.65 0.08
    E 2.19 1 2.19 7.15 0.02
    下载: 导出CSV
  • [1] 孙海文, 庞威, 于邵祯, 等. 国外无人机蜂群发展状况及启示[J]. 指挥控制与仿真, 2022, 44(2): 1-6.

    SUN H W, PANG W, YU S Z, et al. Enlightenment and development of unmanned aerial vehicle swarm abroad[J]. Command Control & Simulation, 2022, 44(2): 1-6(in Chinese).
    [2] 陈士涛, 李大喜, 赵保军. 隐身有人/无人机组合编队协同空战概念研究[J]. 战术导弹技术, 2020(6): 75-80.

    CHEN S T, LI D X, ZHAO B J. Research on the concepts of collaborative dogfight for stealth aerial vehicle and unmanned aerial vehicle formation flying[J]. Tactical Missile Technology, 2020(6): 75-80(in Chinese).
    [3] 闵涛. 双/多基地雷达密集多目标探测技术研究[D]. 长沙: 国防科学技术大学, 2014.

    MIN T. Multiple unresolved targets detection techniques using bistatic/multistatic radar[D]. Changsha: National University of Defense Technology, 2014(in Chinese).
    [4] 邵长宇, 杜兰, 李飞, 等. 基于多目标跟踪的空间锥体目标微多普勒频率提取方法[J]. 电子与信息学报, 2012, 34(12): 2972-2977.

    SHAO C Y, DU L, LI F, et al. Micro-Doppler extraction from space cone target based on multiple target tracking[J]. Journal of Electronics & Information Technology, 2012, 34(12): 2972-2977(in Chinese).
    [5] 阮颖铮. 雷达截面与隐身技术[M]. 北京: 国防工业出版社, 1998.

    RUAN Y Z. Radar cross section and stealth technology[M]. Beijing: National Defense Industry Press, 1998(in Chinese).
    [6] 吴盛源, 张小宽, 袁俊超, 等. 基于FEKO的非合作目标动态极化散射特性实时仿真[J]. 弹箭与制导学报, 2017, 37(3): 97-100.

    WU S Y, ZHANG X K, YUAN J C, et al. Real-time simulation of the dynamic polarization scattering characteristics of noncooperative target based on FEKO[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2017, 37(3): 97-100(in Chinese).
    [7] KASHYAP R, KUMAR V, GANGWAR R K, et al. RCS analysis of scaled down chaff clouds using ANSYS ED(HFSS) to understand the behaviour of real time model[C]//Proceedings of the 2018 IEEE MTT-S International Microwave and RF Conference. Piscataway: IEEE Press, 2018: 1-4.
    [8] 蒋彦雯, 邓彬, 王宏强, 等. 基于FEKO和CST的太赫兹目标RCS仿真[J]. 太赫兹科学与电子信息学报, 2013, 11(5): 684-689.

    JIANG Y W, DENG B, WANG H Q, et al. RCS simulation in THz band based on FEKO and CST[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(5): 684-689(in Chinese).
    [9] 梁达川, 魏明贵, 谷建强, 等. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究[J]. 物理学报, 2014, 63(21): 93-102.

    LIANG D C, WEI M G, GU J Q, et al. Broad-band time domain terahertz radar cross-section research in scale models[J]. Acta Physica Sinica, 2014, 63(21): 93-102(in Chinese).
    [10] ESCOT-BOCANEGRA D, POYATOS-MARTÍNEZ D, PLAZA-GALLARDO B. Indoor measurement of bistatic high resolution range profiles of scale model aircraft targets[C]//Proceedings of the 2018 15th European Radar Conference. Piscataway: IEEE Press, 2018: 174-177.
    [11] GUO L X, WANG A Q, MA J. Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel mom based on pc clusters[J]. Progress in Electromagnetics Research, 2009, 89: 149-166. doi: 10.2528/PIER08121002
    [12] LI Y, HU J, NIE Z. Solving scattering from multiple bodies of revolution by modal characteristic basis function method with sparse matrix technique[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 806-809.
    [13] GUAN B, ZHANG J F, ZHOU X Y, et al. Electromagnetic scattering from objects above a rough surface using the method of moments with half-space Green’s function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3399-3405. doi: 10.1109/TGRS.2009.2022169
    [14] HE S Y, ZHU G Q. A hybrid MM-PO method combining UV technique for scattering from two-dimensional target above a rough surface[J]. Microwave and Optical Technology Letters, 2007, 49(12): 2957-2960. doi: 10.1002/mop.22922
    [15] 魏仪文. 电大尺寸粗糙(海)面及其与目标复合电磁散射研究[D]. 西安: 西安电子科技大学, 2016.

    WEI Y W. Investigation on composite electromagnetic scattering from electrical large scale rough sea surface and target[D]. Xi’an: Xidian University, 2016(in Chinese).
    [16] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.

    SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013(in Chinese).
    [17] 茆诗松, 周纪芗, 陈颖. 试验设计[M]. 2版. 北京: 中国统计出版社, 2012.

    MAO S S, ZHOU J X, CHEN Y. Experiment design[M]. 2nd ed. Beijing: China Statistics Press, 2012(in Chinese).
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  51
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-04
  • 录用日期:  2024-01-12
  • 网络出版日期:  2024-02-26
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答