留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限元节点的涡轮叶片蠕变应变预测

陈实 徐鹤鸣 孙凯 徐逸晗 张屹尚

陈实,徐鹤鸣,孙凯,等. 基于有限元节点的涡轮叶片蠕变应变预测[J]. 北京航空航天大学学报,2025,51(11):3822-3832 doi: 10.13700/j.bh.1001-5965.2023.0639
引用本文: 陈实,徐鹤鸣,孙凯,等. 基于有限元节点的涡轮叶片蠕变应变预测[J]. 北京航空航天大学学报,2025,51(11):3822-3832 doi: 10.13700/j.bh.1001-5965.2023.0639
CHEN S,XU H M,SUN K,et al. Prediction of creep strain of turbine blades based on finite element nodes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3822-3832 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0639
Citation: CHEN S,XU H M,SUN K,et al. Prediction of creep strain of turbine blades based on finite element nodes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3822-3832 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0639

基于有限元节点的涡轮叶片蠕变应变预测

doi: 10.13700/j.bh.1001-5965.2023.0639
基金项目: 

国家科技重大专项(2017-IV-0003-0040);国家自然科学基金(52205224);科技创新行动计划启明星项目(21QB1406300)

详细信息
    通讯作者:

    E-mail:1272707866@qq.com

  • 中图分类号: TG111.8

Prediction of creep strain of turbine blades based on finite element nodes

Funds: 

National Science and Technology Major Project of China (2017-IV-0003-0040); National Natural Science Foundation of China (52205224); Shanghai Science and Technology Commission Rising Star Cultivation Project (21QB1406300)

More Information
  • 摘要:

    针对涡轮叶片蠕变可靠性分析过程,蠕变有限元计算方法效率不足的问题,提出基于有限元节点的叶片蠕变应变预测原理,并建立了蠕变应变预测多层感知机(MLP)模型,能够根据有限元节点的前期蠕变应变信息预测未来蠕变应变。结果表明:相比于蠕变应变公式拟合方法,所建模型应用机器学习方法,可基于较少时间的蠕变信息预测出较好的结果。通过提高训练工况的温度场和转速水平,可以改善蠕变应变预测模型在预测其他工况时的精度。以最高温度场和转速水平为训练工况,该模型根据前6 h的蠕变信息,预测6~100 h的蠕变应变时,有限元节点蠕变应变较大点的误差约为10%,减少了43%~48%的蠕变应变计算耗时,提高了涡轮叶片蠕变可靠性分析效率。

     

  • 图 1  蠕变过程

    Figure 1.  Creep process

    图 2  蠕变预测原理

    Figure 2.  Principle of creep prediction

    图 3  蠕变应变预测流程

    Figure 3.  Prediction process of creep strain

    图 4  数据集构造

    Figure 4.  Dataset construction

    图 5  神经元模型

    Figure 5.  Neuron model

    图 6  激活函数

    Figure 6.  Activation function

    图 7  多层感知机模型

    Figure 7.  MLP model

    图 8  边界条件

    Figure 8.  Boundary condition

    图 9  计算工况

    Figure 9.  Calculated working conditions

    图 10  超温工况下某个网格节点蠕变历程

    Figure 10.  Creep history of one grid node under overtemperature condition

    图 11  MLP模型预测结果

    Figure 11.  Prediction results of MLP model

    图 12  公式拟合方法预测结果

    Figure 12.  Prediction results of formula fitting method

    图 13  已知时间对MLP模型预测性能的影响

    Figure 13.  Effects of given time on performance of MLP model

    图 14  不同工况蠕变应变

    Figure 14.  Creep strain under different working conditions

    图 15  温度场对MLP模型预测性能的影响

    Figure 15.  Effects of temperature field on performance of MLP model

    图 16  转速对MLP模型预测性能的影响

    Figure 16.  Effects of temperature field on performance of MLP model

    图 17  蠕变应变预测结果对比

    Figure 17.  Comparison of prediction results of creep strain

    图 18  蠕变应变计算耗时对比

    Figure 18.  Comparison of time consuming creep strain computation

    表  1  隐式蠕变本构方程[5]

    Table  1.   Implicit creep constitutive equation[5]

    蠕变模型种类 蠕变本构方程 适用阶段
    应变强化模型 $ \dot \varepsilon = {C_1}{\sigma ^{{C_2}}}{\varepsilon ^{{C_3}}}{{\mathrm{e}}^{ - {C_4}/T}} $ 第1阶段
    时间强化模型 $ \dot \varepsilon = {C_1}{\sigma ^{{C_2}}}{t^{{C_3}}}{{\mathrm{e}}^{ - {C_4}/T}} $ 第1阶段
    修正的应变
    强化模型
    $ \dot \varepsilon = {\left\{ {{C_1}{\sigma ^{{C_2}}}{{\left[ {\left( {{C_3} + 1} \right)\varepsilon } \right]}^{{C_3}}}} \right\}^{1/\left( {{C_3} + 1} \right)}} $ 第1阶段
    修正的时间
    强化模型
    $ \dot \varepsilon = {C_1}{\sigma ^{{C_2}}}{t^{{C_3} + 1}}{{\mathrm{e}}^{ - {C_4}/T}}/\left( {{C_3} + 1} \right) $ 第1阶段、第2阶段
    Norton模型 $ \dot \varepsilon = {C_1}{\sigma ^{{C_2}}}{{\mathrm{e}}^{ - {C_3}/T}} $ 第2阶段
    下载: 导出CSV

    表  2  工况参数

    Table  2.   Parameters of working conditions

    工况 温度场/℃ 转速/(r·min−1)
    工况0 1×1.00 1×1.00
    工况1 1×0.98 1×1.00
    工况2 1×1.02 1×1.00
    工况3 1×1.00 1×0.60
    工况4 1×1.00 1×0.80
    下载: 导出CSV

    表  3  不同工况涡轮叶片网格节点蠕变应变范围

    Table  3.   Range of creep strain of turbine blade element nodes under different working conditions

    工况蠕变应变范围
    工况0(温度场×1.00,转速×1.00)0~0.0704
    工况1(温度场×0.98)0~0.0564
    工况2(温度场×1.02)0~0.0791
    工况3(转速×0.6)0~0.0566
    工况4(转速×0.8)0~0.0636
    下载: 导出CSV
  • [1] 黄聪聪, 徐国强, 闻洁, 等. 基于改进温度评估模型的叶片冷却性能分析[J]. 航空动力学报, 2023, 38(4): 816-829.

    HUANG C C, XU G Q, WEN J, et al. Analysis of blade cooling performance based on improved temperature assessment model[J]. Journal of Aerospace Power, 2023, 38(4): 816-829(in Chinese).
    [2] SHENG H L, LIU T, ZHAO Y, et al. New model-based method for aero-engine turbine blade tip clearance measurement[J]. Chinese Journal of Aeronautics, 2023, 36(8): 128-147. doi: 10.1016/j.cja.2022.09.012
    [3] ZENG F, ZHANG W H, WANG Y F, et al. Effects of squealer geometry of turbine blade tip on the tip-leakage flow and loss[J]. Journal of Thermal Science, 2021, 30(4): 1376-1387. doi: 10.1007/s11630-021-1488-2
    [4] 胡贤明, 嵇大伟, 庄书颖, 等. 本构模型对GH4169缺口件蠕变变形响应计算结果的影响[J]. 航空材料学报, 2021, 41(5): 69-77. doi: 10.11868/j.issn.1005-5053.2021.000086

    HU X M, JI D W, ZHUANG S Y, et al. Influence of constitutive model on calculation results of creep deformation response of notched specimen of GH4169 alloy[J]. Journal of Aeronautical Materials, 2021, 41(5): 69-77(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000086
    [5] 王雷, 屈平, 黄进浩, 等. 钛合金耐压结构蠕变数值计算方法与试验验证[J]. 船舶力学, 2019, 23(2): 190-199. doi: 10.3969/j.issn.1007-7294.2019.02.008

    WANG L, QU P, HUANG J H, et al. Creep numerical calculation methods and test verification for pressure structures of titanium alloy[J]. Journal of Ship Mechanics, 2019, 23(2): 190-199(in Chinese). doi: 10.3969/j.issn.1007-7294.2019.02.008
    [6] 叶文明. 变载荷历程下蠕变损伤评估方法研究及应用[D]. 南京: 南京航空航天大学, 2020.

    YE W M. Research and application of creep damage assessment method under variable load history[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
    [7] 李宏新, 王延荣, 程域钊. 基于归一化参数模型的涡轮盘和涡轮叶片蠕变分析[J]. 航空发动机, 2016, 42(5): 48-54.

    LI H X, WANG Y R, CHENG Y Z. Analysis of creep based on normalized-parameter model for turbine disk and blade[J]. Aeroengine, 2016, 42(5): 48-54(in Chinese).
    [8] 程域钊, 王延荣, 李宏新, 等. 归一化参数蠕变模型的程序实现与验证[J]. 航空动力学报, 2017, 32(3): 697-703.

    CHENG Y Z, WANG Y R, LI H X, et al. Implementation and validation of creep model based on normalized parameters[J]. Journal of Aerospace Power, 2017, 32(3): 697-703(in Chinese).
    [9] WENZLICK M, MAMUN O, DEVANATHAN R, et al. Data science techniques, assumptions, and challenges in alloy clustering and property prediction[J]. Journal of Materials Engineering and Performance, 2021, 30(2): 823-838. doi: 10.1007/s11665-020-05340-5
    [10] SANCHEZ S, RENGASAMY D, HYDE C J, et al. Machine learning to determine the main factors affecting creep rates in laser powder bed fusion[J]. Journal of Intelligent Manufacturing, 2021, 32(8): 2353-2373. doi: 10.1007/s10845-021-01785-0
    [11] 谢建新, 宿彦京, 薛德祯, 等. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361.

    XIE J X, SU Y J, XUE D Z, et al. Machine learning for materials research and development[J]. Acta Metallurgica Sinica, 2021, 57(11): 1343-1361(in Chinese).
    [12] SHIN D, YAMAMOTO Y, BRADY M P, et al. Modern data analytics approach to predict creep of high-temperature alloys[J]. Acta Materialia, 2019, 168: 321-330. doi: 10.1016/j.actamat.2019.02.017
    [13] WANG C H, SUN Z H, ZHAO J Q, et al. Creep deformation constitutive model of bstmuf601 superalloy using BP neural network method[J]. Rare Metal Materials and Engineering, 2020, 49(6): 1885-1893.
    [14] SUN C, SHI B, WU C, et al. High temperature creep deformation mechanism of bstmuf601 superalloy[J]. Acta Metallurgica Sinica, 2015, 51(3): 349-356.
    [15] 李福. 航空发动机叶片蠕变寿命可靠性分析及软件系统开发[D]. 沈阳: 东北大学, 2017.

    LI F. Reliability analysis and software system development of creep life of aero-engine blades[D]. Shenyang: Northeastern University, 2017(in Chinese).
    [16] 张效成, 宫建国, 轩福贞. 基于机器学习的蠕变断裂寿命预测方法[J]. 压力容器, 2021, 38(7): 48-57. doi: 10.3969/j.issn.1001-4837.2021.07.007

    ZHANG X C, GONG J G, XUAN F Z. Creep rupture life prediction method based on machine learning[J]. Pressure Vessel Technology, 2021, 38(7): 48-57(in Chinese). doi: 10.3969/j.issn.1001-4837.2021.07.007
    [17] HAN H Y, LI W D, ANTONOV S, et al. Mapping the creep life of nickel-based SX superalloys in a large compositional space by a two-model linkage machine learning method[J]. Computational Materials Science, 2022, 205: 111229. doi: 10.1016/j.commatsci.2022.111229
    [18] LIU Y, WU J M, WANG Z C, et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning[J]. Acta Materialia, 2020, 195: 454-467. doi: 10.1016/j.actamat.2020.05.001
    [19] ZHU Y L, DUAN F M, YONG W, et al. Creep rupture life prediction of nickel-based superalloys based on data fusion[J]. Computational Materials Science, 2022, 211: 111560. doi: 10.1016/j.commatsci.2022.111560
    [20] 王康康, 王小威, 温建锋, 等. 蠕变断裂: 从物理失效机制到结构寿命预测[J]. 机械工程学报, 2021, 57(16): 132-152. doi: 10.3901/JME.2021.16.132

    WANG K K, WANG X W, WEN J F, et al. Creep rupture: from physical failure mechanisms to lifetime prediction of structures[J]. Journal of Mechanical Engineering, 2021, 57(16): 132-152(in Chinese). doi: 10.3901/JME.2021.16.132
    [21] 湛利华, 王萌, 黄明辉. 基于蠕变公式的时效应力松弛行为预测模型[J]. 机械工程学报, 2013, 49(10): 70-76. doi: 10.3901/JME.2013.10.070

    ZHAN L H, WANG M, HUANG M H. Prediction model for aging stress-relaxation behavior based on creep equations[J]. Journal of Mechanical Engineering, 2013, 49(10): 70-76(in Chinese). doi: 10.3901/JME.2013.10.070
    [22] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  54
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 录用日期:  2024-01-05
  • 网络出版日期:  2024-02-02
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答