留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BSVAR的航空发动机剩余使用寿命预测方法

赵昱宇 索超 王雨潇

赵昱宇,索超,王雨潇. 基于BSVAR的航空发动机剩余使用寿命预测方法[J]. 北京航空航天大学学报,2025,51(11):3790-3798 doi: 10.13700/j.bh.1001-5965.2023.0643
引用本文: 赵昱宇,索超,王雨潇. 基于BSVAR的航空发动机剩余使用寿命预测方法[J]. 北京航空航天大学学报,2025,51(11):3790-3798 doi: 10.13700/j.bh.1001-5965.2023.0643
ZHAO Y Y,SUO C,WANG Y X. BSVAR-based remaining useful life prediction method for aircraft engines[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3790-3798 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0643
Citation: ZHAO Y Y,SUO C,WANG Y X. BSVAR-based remaining useful life prediction method for aircraft engines[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3790-3798 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0643

基于BSVAR的航空发动机剩余使用寿命预测方法

doi: 10.13700/j.bh.1001-5965.2023.0643
基金项目: 

国家自然科学基金(62003352,62003351); 中央高校基本科研业务费专项资金(3122019055,3122025041,3122025047)

详细信息
    通讯作者:

    E-mail:wangyx@cauc.edu.cn

  • 中图分类号: V240.2;V263;TP183

BSVAR-based remaining useful life prediction method for aircraft engines

Funds: 

National Natural Science Foundation of China (62003352,62003351); The Fundamental Research Funds for the Central Universities (3122019055,3122025041,3122025047)

More Information
  • 摘要:

    剩余使用寿命(RUL)的准确预测对航空发动机的稳定性、可靠性和安全性至关重要。针对现有RUL预测方法无法充分挖掘传感器数据退化特征的问题,提出一种基于深度学习模型BSVAR的航空发动机RUL预测方法。采用双向长短期记忆(Bi-LSTM)网络与基于自注意力机制的变分自编码器(SVAE)提取传感器数据的深层次退化信息;基于变分推理对传感器数据具有的退化特征进行聚类,生成潜在空间;将Bi-LSTM、SVAE和回归器相结合建立RUL预测模型,充分提取传感器数据的退化特征,提升RUL预测精度。在航空发动机C-MAPSS数据集上进行实验验证,实验结果表明:所提方法可以在潜在空间中标记发动机的退化进程;相比于现有的RUL预测方法具有更高的预测精度。

     

  • 图 1  缩放点积自注意力

    Figure 1.  Scaled dot-product self-attention

    图 2  变分自编码器结构

    Figure 2.  Structure of variational autoencoder

    图 3  BSVAR模型结构

    Figure 3.  Structure of BSVAR model

    图 4  基于BSVAR的RUL预测流程

    Figure 4.  BSVAR-based RUL prediction flow

    图 5  RUL预测结果

    Figure 5.  RUL prediction results

    图 6  航空发动机退化过程

    Figure 6.  Aircraft engine degradation process

    图 7  所选发动机在潜在空间中的标记

    Figure 7.  Marking of the selected engines in the latent space

    表  1  C-MAPSS数据集

    Table  1.   C-MAPSS dataset

    数据集 训练集发动机台数 测试集发动机台数 工作条件 故障模式
    FD001 100 100 1 1
    FD002 260 259 6 1
    FD003 100 100 1 2
    FD004 249 248 6 2
    下载: 导出CSV

    表  2  超参数设置

    Table  2.   Hyperparameter setup

    参数数值
    时间窗(FD001/FD002/FD003/FD004)25/20/30/15
    潜在空间维数2
    学习率0.001
    迭代次数10
    Bi-LSTM单元个数300
    批大小256
    全连接层神经元个数200
    下载: 导出CSV

    表  3  与最新方法比较

    Table  3.   Comparison with state-of-the-art approaches

    方法 RMSE Score
    FD001 FD002 FD003 FD004 FD001 FD002 FD003 FD004
    DCNN[5] 12.61 22.36 12.64 23.31 273.7 10412 284.1 12466
    Bi-LSTM[8] 25.11 26.61 4793 4971
    HDNN[9] 13.01 15.24 12.22 18.156 245 1282.42 287.72 1527.42
    BGRU-TSAM[10] 12.56 18.92 12.45 20.47 213.35 2264.13 232.86 3610.34
    Dual-Att[12] 12.25 17.08 13.39 19.68 198 1575 290 1741
    BSVAR 12.39 14.88 13 15.52 246.58 854.11 317.51 1160.17
    EN[14] 13.58 19.59 19.16 22.15 228 2650 1727 2901
    RVE[20] 13.42 14.92 12.51 16.37 323.82 1379.17 256.36 1845.99
    下载: 导出CSV

    表  4  所选4台发动机的RUL值

    Table  4.   RUL values for the selected four engines

    发动机编号 真实RUL值 预测RUL值
    1# 112 118.34
    11# 97 95.64
    77# 34 23.55
    100# 20 19.07
    下载: 导出CSV
  • [1] CHEN X Z, YU J S, TANG D Y, et al. Remaining useful life prognostic estimation for aircraft subsystems or components: a review[C]//Proceedings of the 10th International Conference on Electronic Measurement & Instruments. Piscataway: IEEE Press, 2011: 94-98.
    [2] NGUYEN K T P, MEDJAHER K, TRAN D T. A review of artificial intelligence methods for engineering prognostics and health management with implementation guidelines[J]. Artificial Intelligence Review, 2023, 56(4): 3659-3709. doi: 10.1007/s10462-022-10260-y
    [3] CHIACHÍO J, JALÓN M L, CHIACHÍO M, et al. A Markov chains prognostics framework for complex degradation processes[J]. Reliability Engineering & System Safety, 2020, 195: 106621.
    [4] SHI Y, ZHU W H, XIANG Y S, et al. Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement[J]. Reliability Engineering & System Safety, 2020, 202: 107042.
    [5] LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11.
    [6] GUO L, LI N P, JIA F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240: 98-109. doi: 10.1016/j.neucom.2017.02.045
    [7] CHEN J L, JING H J, CHANG Y H, et al. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process[J]. Reliability Engineering & System Safety, 2019, 185: 372-382.
    [8] HUANG C G, HUANG H Z, LI Y F. A bidirectional LSTM prognostics method under multiple operational conditions[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8792-8802. doi: 10.1109/TIE.2019.2891463
    [9] AL-DULAIMI A, ZABIHI S, ASIF A, et al. A multimodal and hybrid deep neural network model for Remaining Useful Life estimation[J]. Computers in Industry, 2019, 108: 186-196. doi: 10.1016/j.compind.2019.02.004
    [10] ZHANG J S, JIANG Y C, WU S M, et al. Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism[J]. Reliability Engineering & System Safety, 2022, 221: 108297.
    [11] 聂磊, 徐诗奕, 张吕凡, 等. 基于多头注意力机制的飞机发动机寿命预测研究[J]. 推进技术, 2023, 44(8): 197-205.

    NIE L, XU S Y, ZHANG L F, et al. Remaining useful life prediction of aeroengine based on multi-head attention[J]. Journal of Propulsion Technology, 2023, 44(8): 197-205(in Chinese).
    [12] LIU L, SONG X, ZHOU Z T. Aircraft engine remaining useful life estimation by a double attention-based data-driven architecture[J]. Reliability Engineering & System Safety, 2022, 221: 108330.
    [13] 王进花, 高媛, 曹洁, 等. 基于AE-BN的发电机滚动轴承故障诊断[J]. 北京航空航天大学学报, 2023, 49(8): 1896-1903.

    WANG J H, GAO Y, CAO J, et al. Fault diagnosis of generator rolling bearing based on AE-BN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(8): 1896-1903(in Chinese).
    [14] YU W N, KIM I Y, MECHEFSKE C. An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme[J]. Reliability Engineering & System Safety, 2020, 199: 106926.
    [15] KINGMA D P, WELING M. Auto-encoding variational bayes[EB/OL]. (2022-12-10)[2023-02-01]. https://arxiv.org/abs/1312.6114.
    [16] WANG X X, PI D C, ZHANG X Y, et al. Variational transformer-based anomaly detection approach for multivariate time series[J]. Measurement, 2022, 191: 110791. doi: 10.1016/j.measurement.2022.110791
    [17] LI L Y, YAN J C, WANG H Y, et al. Anomaly detection of time series with smoothness-inducing sequential variational auto-encoder[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(3): 1177-1191. doi: 10.1109/TNNLS.2020.2980749
    [18] REMADNA I, TERRISSA L S, AL MASRY Z, et al. RUL prediction using a fusion of attention-based convolutional variational AutoEncoder and ensemble learning classifier[J]. IEEE Transactions on Reliability, 2023, 72(1): 106-124. doi: 10.1109/TR.2022.3190639
    [19] LIU X B, TENG W, WU S M, et al. Sparse dictionary learning based adversarial variational auto-encoders for fault identification of wind turbines[J]. Measurement, 2021, 183: 109810. doi: 10.1016/j.measurement.2021.109810
    [20] COSTA N, SÁNCHEZ L. Variational encoding approach for interpretable assessment of remaining useful life estimation[J]. Reliability Engineering & System Safety, 2022, 222: 108353.
    [21] 周哲韬, 刘路, 宋晓, 等. 基于Transformer模型的滚动轴承剩余使用寿命预测方法[J]. 北京航空航天大学学报, 2023, 49(2): 430-443.

    ZHOU Z T, LIU L, SONG X, et al. Remaining useful life prediction method of rolling bearing based on Transformer model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 430-443(in Chinese).
    [22] SAXENA A, GEOBEL K. NASA prognostics repository [EB/OL]. (2008-10-01) [2023-02-01]. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.
    [23] ARIAS CHAO M, KULKARNI C, GOEBEL K, et al. Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics[J]. Data, 2021, 6(1): 5. doi: 10.3390/data6010005
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  69
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 录用日期:  2023-11-24
  • 网络出版日期:  2023-12-09
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答