留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

翼型不确定性对气动特性影响分析与外形监测方法

王光瀚 宋晨 杨超

王光瀚,宋晨,杨超. 翼型不确定性对气动特性影响分析与外形监测方法[J]. 北京航空航天大学学报,2025,51(11):3945-3952 doi: 10.13700/j.bh.1001-5965.2023.0647
引用本文: 王光瀚,宋晨,杨超. 翼型不确定性对气动特性影响分析与外形监测方法[J]. 北京航空航天大学学报,2025,51(11):3945-3952 doi: 10.13700/j.bh.1001-5965.2023.0647
WANG G H,SONG C,YANG C. Influence of airfoil uncertainty on aerodynamic characteristics and shape inspection method[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3945-3952 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0647
Citation: WANG G H,SONG C,YANG C. Influence of airfoil uncertainty on aerodynamic characteristics and shape inspection method[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(11):3945-3952 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0647

翼型不确定性对气动特性影响分析与外形监测方法

doi: 10.13700/j.bh.1001-5965.2023.0647
基金项目: 

国家自然科学基金(11402013)

详细信息
    通讯作者:

    E-mail:songchen@buaa.edu.cn

  • 中图分类号: V224+.3

Influence of airfoil uncertainty on aerodynamic characteristics and shape inspection method

Funds: 

National Natural Science Foundation of China (11402013)

More Information
  • 摘要:

    评估翼型外形不确定性对气动特性产生的影响,对于提出飞行器全生命周期的外形监测指标有重要意义。传统外形参数化方法变量众多,加之气动特性计算复杂,外形与气动特性间的不确定性传递难以直接分析。采用类-形函数变换(CST)方法参数化描述翼型,通过随机分布的参数描述外形不确定性。通过计算流体力学(CFD)方法生成气动力样本库,使用最小角回归(LAR)算法建立稀疏混沌多项式代理模型。通过混沌多项式的系数直接计算外形参数的全局敏感度,并根据敏感度大小选取外形监测关键点。算例表明:仅控制2个关键点的偏差区间即可以将升力系数的方差降低25%,均值提升3.8%,为实际加工与维护提供了高效合理的监测方法。

     

  • 图 1  典型低速翼型

    Figure 1.  Airfoil for classical low-speed aircraft

    图 2  翼型y坐标偏差与Bernstein多项式阶数的关系

    Figure 2.  Relationship between airfoil y-coordinate deviation and Bernstein Polynomial Order

    图 3  所有CST参数同时变化得到的翼型

    Figure 3.  Airfoils obtained by simultaneous variation of all CST parameters

    图 4  单个CST参数变化得到的翼型

    Figure 4.  Airfoils with single CST parameters varying

    图 5  翼型周围的网格

    Figure 5.  Mesh around airfoil

    图 6  完整流场网格与边界条件

    Figure 6.  Whole flow field mesh and boundary condition

    图 7  升力系数PCE代理模型相对误差

    Figure 7.  Relative error of PCE proxy model for lift coefficient

    图 8  初始翼型与扰动翼型的外形

    Figure 8.  Shape of original and deviated airfoil profiles

    图 9  初始翼型与扰动翼型的压力分布

    Figure 9.  Pressure distribution on original and deviated airfoils

    图 10  CST参数对应的关键点

    Figure 10.  Key points of corresponding to CST parameters

    图 11  控制外形与原始数据的CL分布

    Figure 11.  Distribution of CL for controlled shape and original data

    表  1  典型低速翼型CST拟合参数

    Table  1.   CST parameters for airfoil applied on typical low-speed aircraft

    表面 w0 w1 w2 w3 w4 w5 w6 w7 w8 $ {\zeta}_{\text{TE}} $
    上表面 0.260 0.484 0.101 0.747 −0.119 0.738 0.017 0.439 0.228 −0.050
    下表面 −0.194 0.129 −0.483 0.498 −0.775 0.477 −0.405 0.181 0.033 −0.054
    下载: 导出CSV

    表  2  计算条件设置

    Table  2.   Calculation condition settings

    雷诺数 来流速度/(m·s−1) 攻角/(°)
    $ \text{2×}{\text{10}}^{\text{6}} $ 34 0
    下载: 导出CSV

    表  3  网格独立性检验

    Table  3.   Mesh independence check

    网格数升力系数CL阻力系数CD
    771700.901960.01488
    904000.902620.01495
    1436500.902570.01497
    下载: 导出CSV

    表  4  外形参数的概率分布

    Table  4.   Probability distribution of shape parameters

    分布 wU wL
    分布类型 均匀分布 均匀分布
    偏差区间 $ \text{±0.05} $ $ \text{±0.05} $
     注:上表面外形参数wU,下表面外形参数wL的准确值参见表1
    下载: 导出CSV

    表  5  PCE代理模型的LOO误差与统计矩

    Table  5.   LOO error and statistical moments of the PCE proxy model

    变量 升力系数 阻力系数
    $ {\varepsilon }_{\text{LOO}} $ $ \text{6.21×}{\text{10}}^{{-}\text{1}\text{3}} $ $ \text{1.05×}{\text{10}}^{{-11}} $
    均值 0.8936 0.0149
    方差 $ \text{8.24×}{\text{10}}^{{-4}} $ $ \text{1.11×}{\text{10}}^{{-7}} $
    下载: 导出CSV

    表  6  升力系数对外形参数敏感度的计算结果

    Table  6.   Sensitivity results of lift coefficient with respect to shape parameters

    CST参数上表面CL敏感度下表面CL敏感度
    w00.0210.012
    w10.0360.017
    w20.0410.023
    w30.0390.032
    w40.0340.042
    w50.0310.055
    w60.0310.074
    w70.0320.115
    w80.0290.337
    下载: 导出CSV

    表  7  阻力系数对外形参数敏感度的计算结果

    Table  7.   Sensitivity results of drag coefficient with respect to shape parameters

    敏感度 w0 w1 w2 w3 w4 w5 w6 w7 w8
    上表面CD敏感度 0.073 0.133 0.153 0.156 0.134 0.094 0.054 0.025 0.006
    下表面CD敏感度 0.002 0.000 0.000 0.000 0.001 0.004 0.011 0.028 0.130
    下载: 导出CSV

    表  8  原始外形与CD敏感外形阻力系数对比

    Table  8.   Drag coefficient comparison between original airfoil and CD-sensitive deviated airfoil

    外形 压差阻力系数 摩擦阻力系数
    原始外形 0.00665 0.00825
    CD敏感偏差外形 0.00714 0.00826
    下载: 导出CSV

    表  9  上表面CST参数对应的外形关键点

    Table  9.   CST parameters with corresponding shape key points on the upper surface

    点编号坐标
    1(0.047,0.063)
    2(0.159,0.108)
    3(0.262,0.119)
    4(0.365,0.115)
    5(0.468,0.100)
    6(0.586,0.074)
    7(0.686,0.047)
    8(0.786,0.018)
    9(0.901,−0.018)
    下载: 导出CSV

    表  10  下表面CST参数对应的外形关键点

    Table  10.   CST parameters with corresponding shape key points on the lower surface

    点编号坐标
    10(0.057,−0.028)
    11(0.153,−0.038)
    12(0.262,−0.048)
    13(0.370,−0.055)
    14(0.479,−0.058)
    15(0.576,−0.056)
    16(0.685,−0.051)
    17(0.794,−0.046)
    18(0.891,−0.045)
    下载: 导出CSV

    表  11  CST参数变化对应的关键点纵坐标变化区间

    Table  11.   Intervals of change in the vertical coordinates of keypoints corresponding to changes in CST parameters

    点编号 纵坐标区间 点编号 纵坐标区间
    1 [0.052,0.073] 10 [−0.039,−0.017]
    2 [0.091,0.124] 11 [−0.055,−0.021]
    3 [0.100,0.138] 12 [−0.067,−0.029]
    4 [0.096,0.134] 13 [−0.074,−0.035]
    5 [0.082,0.118] 14 [−0.076,−0.040]
    6 [0.058,0.090] 15 [−0.072,−0.040]
    7 [0.034,0.060] 16 [−0.064,−0.038]
    8 [0.009,0.028] 17 [−0.055,−0.037]
    9 [−0.022,−0.013] 18 [−0.050,−0.040]
    下载: 导出CSV

    表  12  减小关键点y坐标偏差对CL计算结果的影响

    Table  12.   Effects of reducing y-coordinate deviation of key points on CL results

    外形 点17 y坐标 点18 y坐标 样本量 CL均值 CL方差 良品率
    不控制
    外形
    [−0.055,−0.037] [−0.050,−0.040] 10000 0.8940 8.25×10−4 0.896
    控制
    外形
    [−0.050,−0.041] [−0.047,−0.042] 8039 0.8974 6.18×10−4 0.948
    下载: 导出CSV
  • [1] 陈登海. 基于室内GPS的飞机数字化水平测量技术研究[D]. 南京: 南京航空航天大学, 2010.

    CHEN D. H. Research on digital level measurement of airplane based on indoor GPS[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
    [2] 张开富. 飞机部件装配误差累积分析与容差优化方法研究[D]. 西安: 西北工业大学, 2006: 1-16.

    ZHANG K. F. Assembly error stack-up analysis and optimum tolerancing for aircraft assembly[D]. Xi’an: Northwestern Polytechnical University, 2006: 1-16(in Chinese).
    [3] HICKS P M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7): 407-412. doi: 10.2514/3.58379
    [4] SOBIECZKY H. Parametric airfoils and wings[M]//FUJII K, DULIKRAVICH G. Recent development of aerodynamic design methodologies. Berlin: Springer, 1999: 71-87.
    [5] BOEHM W. Bézier presentation of airfoils[J]. Computer Aided Geometric Design, 1987, 4(1-2): 17-22. doi: 10.1016/0167-8396(87)90021-5
    [6] ROBINSON G M, KEANE A J. Concise orthogonal representation of supercritical airfoils[J]. Journal of Aircraft, 2001, 38(3): 580-583. doi: 10.2514/2.2803
    [7] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. doi: 10.2514/1.29958
    [8] KULFAN B M. A Universal parametric geometry representation method–“CST”[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
    [9] WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897-936. doi: 10.2307/2371268
    [10] XIU D B, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187(1): 137-167. doi: 10.1016/S0021-9991(03)00092-5
    [11] GHANEM R. Ingredients for a general purpose stochastic finite elements implementation[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 168(1-4): 19-34. doi: 10.1016/S0045-7825(98)00106-6
    [12] LÜTHEN N, MARELLI S, SUDRET B. Sparse polynomial chaos expansions: literature survey and benchmark[J]. SIAM/ASA Journal on Uncertainty Quantification, 2021, 9(2): 593-649. doi: 10.1137/20M1315774
    [13] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1-3): 271-280. doi: 10.1016/S0378-4754(00)00270-6
    [14] SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2008, 93(7): 964-979.
    [15] MASTERS D A, TAYLOR N J, RENDALL T C S, et al. Geometric comparison of aerofoil shape parameterization methods[J]. AIAA Journal, 2017, 55(5): 1575-1589. doi: 10.2514/1.J054943
    [16] KULFAN B, BUSSOLETTI J. "Fundamental" parameteric geometry representations for aircraft component shapes[C]//Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2006.
    [17] XIU D B, KARNIADAKIS G E. Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644. doi: 10.1137/S1064827501387826
    [18] BLATMAN G, SUDRET B. Adaptive sparse polynomial chaos expansion based on least angle regression[J]. Journal of Computational Physics, 2011, 230(6): 2345-2367. doi: 10.1016/j.jcp.2010.12.021
  • 加载中
图(11) / 表(12)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  67
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 录用日期:  2023-11-16
  • 网络出版日期:  2023-11-29
  • 整期出版日期:  2025-11-25

目录

    /

    返回文章
    返回
    常见问答