留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞机翼面布局与任务轨迹一体化设计

叶一樵 沈海东 刘燕斌 高泽鹏 孔祥 陈金宝

叶一樵,沈海东,刘燕斌,等. 高超声速飞机翼面布局与任务轨迹一体化设计[J]. 北京航空航天大学学报,2025,51(12):4246-4257 doi: 10.13700/j.bh.1001-5965.2023.0650
引用本文: 叶一樵,沈海东,刘燕斌,等. 高超声速飞机翼面布局与任务轨迹一体化设计[J]. 北京航空航天大学学报,2025,51(12):4246-4257 doi: 10.13700/j.bh.1001-5965.2023.0650
YE Y Q,SHEN H D,LIU Y B,et al. Integrated design of hypersonic aircraft wing layout and mission trajectory[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4246-4257 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0650
Citation: YE Y Q,SHEN H D,LIU Y B,et al. Integrated design of hypersonic aircraft wing layout and mission trajectory[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4246-4257 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0650

高超声速飞机翼面布局与任务轨迹一体化设计

doi: 10.13700/j.bh.1001-5965.2023.0650
基金项目: 

国家自然科学基金(52402475,52272369);中央高校基本科研业务费专项资金(NS2022081);南京航空航天大学研究生科研与实践创新计划(xcxjh20221507,xcxjh20231503)

详细信息
    通讯作者:

    E-mail:shenhaidong@nuaa.edu.cn

  • 中图分类号: V221

Integrated design of hypersonic aircraft wing layout and mission trajectory

Funds: 

National Natural Science Foundation of China (52402475,52272369); The Fundamental Research Funds for the Central Universities (NS2022081); Postgraduate Research & Practice Innovation Program of NUAA (xcxjh20221507,xcxjh20231503)

More Information
  • 摘要:

    针对传统多学科设计优化(MDO)模型复杂导致计算量大、收敛困难等问题,以高超声速飞机为研究对象,提出一种基于贝叶斯优化理论的飞机翼面布局与任务轨迹一体化设计优化方法。构建包含翼面特征参数的气动特性代理模型,在此基础上,以高超声速飞机翼面特征参数为输入,以hp自适应Radau伪谱法求解得到的最优飞行轨迹燃油消耗量为输出,基于贝叶斯优化方法构建翼面布局-轨迹一体化迭代设计流程,通过期望改进(EI)策略更新样本点参数,实现面向特定飞行任务的高超声速飞机翼面布局与任务轨迹一体化优化设计。仿真结果表明:所提方法能够在满足优化结果收敛精度的前提下,显著提升迭代设计效率,具有较强的工程应用价值。

     

  • 图 1  高超声速飞机基准几何构型

    Figure 1.  Reference geometry configuration of hypersonic aircraft

    图 2  高超声速飞机翼面布局与任务轨迹一体化设计优化流程

    Figure 2.  Flow chart for integrated design optimization of hypersonic aircraft wing layout and mission trajectory

    图 3  变翼面布局飞机的气动特性代理建模

    Figure 3.  Surrogate modeling of aerodynamic characteristics of aircraft with variable wing layout

    图 4  大后掠双三角翼设计参数示意图

    Figure 4.  Schematic diagram of design parameters for the highly swept double delta wing

    图 5  高超声速飞机表面面元矢量

    Figure 5.  Surface panel vector of hypersonic aircraft

    图 6  高超声速飞机升力系数特性验证

    Figure 6.  Verification of lift coefficient of hypersonic aircraft

    图 7  高超声速飞机阻力系数特性验证

    Figure 7.  Verification of drag coefficient of hypersonic aircraft

    图 8  高超声速飞机俯仰力矩系数特性验证

    Figure 8.  Verification of pitching moment coefficient of hypersonic aircraft

    图 9  飞行任务剖面

    Figure 9.  Flight mission profile

    图 10  基于hp自适应Radau伪谱法流程

    Figure 10.  Flow chart based on hp-adaptive Radau pseudo-spectral method

    图 11  贝叶斯优化流程

    Figure 11.  Flow chart based on Bayesian optimization

    图 12  目标函数代理模型

    Figure 12.  Objective function surrogate model

    图 13  基准翼面与优化翼面构型飞行轨迹对比

    Figure 13.  Comparison of flight trajectories between benchmark and optimized wing surface configuration

    图 14  基准翼面与优化翼面布局对比

    Figure 14.  Comparison of benchmark and optimized wing layout

    表  1  高超声速飞机基准几何特征参数

    Table  1.   Reference parameters of geometric features of hypersonic aircraft

    几何参数 数值
    机长/m 22.484
    机宽/m 3.400
    机高/m 1.121
    翼展/m 3.600
    翼根弦长/m 9.256
    翼梢弦长/m 1.000
    主翼第一后掠角/(°) 70
    主翼第二后掠角/(°) 38.133
    机翼投影面积/m2 32.085
    空重/kg 11000
    起飞质量/kg 20000
    下载: 导出CSV

    表  2  飞行任务条件

    Table  2.   Flight mission conditions

    任务条件 h/km Ma m/kg $\gamma $/(°) r/km
    爬升段
    初始条件
    17.6 3 20000 0 0
    爬升段
    终端条件
    24.2 5 $ \geqslant $11000 0
    巡航段
    终端条件
    24.2 5 $ \geqslant $11000 0 1000
    下载: 导出CSV

    表  3  优化结果

    Table  3.   Optimal results

    方法 ${\theta _1}$/(°) ${c_1}$/m 剩余质量/kg 计算时间/s
    基准翼面 70.000 1.000 17007.482 13.056
    贝叶斯优化 77.549 0.800 17115.889 637.475
    遗传算法 77.383 0.800 17115.938 15517.108
    下载: 导出CSV
  • [1] 李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J]. 航空科学技术, 2020, 31(11): 7-13.

    LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J]. Aeronautical Science & Technology, 2020, 31(11): 7-13(in Chinese).
    [2] 廖孟豪, 李宪开, 窦相民. 美国高超声速作战飞机气动布局演化分析[J]. 航空科学技术, 2020, 31(11): 3-6.

    LIAO M H, LI X K, DOU X M. Evolution analysis of aerodynamic configuration of hypersonic military aircraft in USA[J]. Aeronautical Science & Technology, 2020, 31(11): 3-6(in Chinese).
    [3] 戴旭平, 王霄, 卢恩巍, 等. 宽速域无尾布局气动焦点变化规律研究[J]. 航空科学技术, 2020, 31(11): 97-103.

    DAI X P, WANG X, LU E W, et al. Investigation on aerodynamic center of tailless configuration under the wide Mach number range[J]. Aeronautical Science & Technology, 2020, 31(11): 97-103(in Chinese).
    [4] 张远, 黄万伟, 路坤锋, 等. 高超声速变外形飞行器建模与有限时间控制[J]. 北京航空航天大学学报, 2022, 48(10): 1979-1993.

    ZHANG Y, HUANG W W, LU K F, et al. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993(in Chinese).
    [5] TSUCHIYA T, TAKENAKA Y, TAGUCHI H. Multidisciplinary design optimization for hypersonic experimental vehicle[J]. AIAA Journal, 2007, 45(7): 1655-1662. doi: 10.2514/1.26668
    [6] LIU W, ZHANG C N, WANG X P, et al. Parametric study on lateral-directional stability of hypersonic waverider[J]. AIAA Journal, 2021, 59(8): 3025-3042.
    [7] 杨磊, 韦喜忠, 赵峰, 等. 多学科设计优化算法研究综述[J]. 舰船科学技术, 2017, 39(3): 1-5.

    YANG L, WEI X Z, ZHAO F, et al. Review of the multidisciplinary design optimization algorithm[J]. Ship Science and Technology, 2017, 39(3): 1-5(in Chinese).
    [8] LIU F, HAN Z H, ZHANG Y, et al. Surrogate-based aerodynamic shape optimization of hypersonic flows considering transonic performance[J]. Aerospace Science and Technology, 2019, 93: 105345. doi: 10.1016/j.ast.2019.105345
    [9] YUAN Y L, SHEN Q L, XI W H, et al. Multidisciplinary design optimization of dynamic positioning system for semi-submersible platform[J]. Ocean Engineering, 2023, 285: 115426. doi: 10.1016/j.oceaneng.2023.115426
    [10] 张天天. 吸气式宽速域巡航飞行器多学科设计优化技术研究[D]. 长沙: 国防科技大学, 2020: 11-15.

    ZHANG T T. Research on the multidisciplinary design optimization technique of the airbreathing wide-speed-range cruising vehicle[D]. Changsha: National University of Defense Technology, 2020: 11-15(in Chinese).
    [11] SHAHRIARI B, SWERSKY K, WANG Z Y, et al. Taking the human out of the loop: a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175. doi: 10.1109/JPROC.2015.2494218
    [12] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.

    HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225(in Chinese).
    [13] COULTER B, WANG Z B, HUANG D N. Geometric design of hypersonic vehicles for optimal mission performance using machine learning[C]//Proceedings of the AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: 1304.
    [14] 口启慧, 王海峰, 刘坤澎, 等. 基于一种贝叶斯优化框架的高空螺旋桨气动优化设计[J]. 空气动力学学报, 2023, 41(4): 96-103.

    KOU Q H, WANG H F, LIU K P, et al. Aerodynamic design of high-altitude propellers within a Bayesian optimization framework[J]. Acta Aerodynamica Sinica, 2023, 41(4): 96-103(in Chinese).
    [15] MARIO G S. Control co-design: an engineering game changer[J]. Advanced Control for Applications: Engineering and Industrial Systems, 2019, 1(1): 18. doi: 10.1002/adc2.18
    [16] LI R, XU P, PENG Y, et al. Multi-objective optimization of a high-speed train head based on the FFD method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 152: 41-49. doi: 10.1016/j.jweia.2016.03.003
    [17] AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. doi: 10.1016/j.paerosci.2020.100682
    [18] 陈召斌, 廖孟豪, 李飞, 等. 高超声速飞机总体气动布局设计特点分析[J]. 航空科学技术, 2022, 33(2): 6-11.

    CHEN Z B, LIAO M H, LI F, et al. Analysis of design characteristics of overall aerodynamic layout of hypersonic aircraft[J]. Aeronautical Science & Technology, 2022, 33(2): 6-11(in Chinese) .
    [19] MA Y, YANG T, FENG Z W, et al. Hypersonic lifting body aerodynamic shape optimization based on the multiobjective evolutionary algorithm based on decomposition[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(7): 1246-1266. doi: 10.1177/0954410014548699
    [20] OPPENHEIMER M, DOMAN D, MCNAMARA J, et al. Viscous effects for a hypersonic vehicle model[C]//Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2008: 6382.
    [21] 袁亚, 刘君, 余家泉, 等. 高速折叠翼飞行器气动布局优化设计[J]. 北京航空航天大学学报, 2024, 50(11): 3410-3416.

    YUAN Y, LIU J, YU J Q, et al. Research on aerodynamic layout optimization technology of high-speed folding vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(11): 3410-3416(in Chinese).
    [22] 衣春轮, 刘燕斌, 曹瑞, 等. 基于代理模型的高超声速飞行器外形参数优化[J]. 航空动力学报, 2019, 34(11): 2354-2365.

    YI C L, LIU Y B, CAO R, et al. Shape parameters optimization of hypersonic vehicle based on surrogate model[J]. Journal of Aerospace Power, 2019, 34(11): 2354-2365(in Chinese).
    [23] PATTERSON M A, RAO A V. Exploiting sparsity in direct collocation pseudospectral methods for solving optimal control problems[J]. Journal of Spacecraft and Rockets, 2012, 49(2): 354-377. doi: 10.2514/1.A32071
    [24] 任鹏飞, 王洪波, 周国峰, 等. 临近空间固体动力飞行器发动机与轨迹一体化设计优化[J]. 推进技术, 2021, 42(9): 1936-1947.

    REN P F, WANG H B, ZHOU G F, et al. Integrated design optimization for motor and trajectory of near space solid rocket motor powered vehicle[J]. Journal of Propulsion Technology, 2021, 42(9): 1936-1947(in Chinese).
    [25] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129.

    HE Z K, LIU G B, ZHAO X J, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121-1129(in Chinese).
    [26] 李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述[J]. 计算机科学, 2022, 49(增刊1): 86-92.

    LI Y R, ZHANG Y L, WANG J C. Survey on Bayesian optimization methods for hyper-parameter tuning[J]. Computer Science, 2022, 49(Sup 1): 86-92(in Chinese).
    [27] 龚开奇, 魏宏夔, 李嘉玮, 等. 基于深度强化学习的跳跃式导弹轨迹优化算法[J]. 北京航空航天大学学报, 2023, 49(6): 1383-1393.

    GONG K Q, WEI H K, LI J W, et al. Trajectory optimization algorithm of skipping missile based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1383-1393(in Chinese).
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  118
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 录用日期:  2024-02-02
  • 网络出版日期:  2024-02-27
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答