留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临近空间飞行器分布式太阳电池发电分析及系统优化

蔡培源 徐国宁 柯挚捷 张衍垒 杨燕初 蔡榕

蔡培源,徐国宁,柯挚捷,等. 临近空间飞行器分布式太阳电池发电分析及系统优化[J]. 北京航空航天大学学报,2025,51(8):2757-2766 doi: 10.13700/j.bh.1001-5965.2023.0652
引用本文: 蔡培源,徐国宁,柯挚捷,等. 临近空间飞行器分布式太阳电池发电分析及系统优化[J]. 北京航空航天大学学报,2025,51(8):2757-2766 doi: 10.13700/j.bh.1001-5965.2023.0652
CAI P Y,XU G N,KE Z J,et al. Distributed solar cell generation analysis and system optimization for near space vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2757-2766 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0652
Citation: CAI P Y,XU G N,KE Z J,et al. Distributed solar cell generation analysis and system optimization for near space vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2757-2766 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0652

临近空间飞行器分布式太阳电池发电分析及系统优化

doi: 10.13700/j.bh.1001-5965.2023.0652
基金项目: 

中国科学院战略性先导科技专项(XDA17020304)

详细信息
    通讯作者:

    E-mail:xugn@aircas.ac.cn

  • 中图分类号: V242;TM46

Distributed solar cell generation analysis and system optimization for near space vehicles

Funds: 

Strategic Priority Research Program of the China Academy of Sciences (XDA17020304)

More Information
  • 摘要:

    临近空间长航时飞行器能源形式一般采用光伏发电系统,太阳电池铺设在飞行器上表面,受飞行器外形限制和影响,太阳电池呈现曲面分布。为高效利用曲面太阳电池阵列,通常采用分布式的太阳电池发电控制管理模式,将曲面阵列划为若干太阳电池子阵并对每个子阵独立控制,以实现整体太阳电池阵列的最大功率发电。基于此,建立临近空间飞行器分布式太阳电池阵列发电模型。分析了不同因素太阳电池子阵的发电功率的影响和规律,提出一种分布式太阳电池最大供电跟踪控制器拓扑架构,并进行仿真分析,结果表明:该拓扑架构在保证总体能量不变的情况下降低了电源变换装置的额定功率,为临近空间飞行器电源系统减重提供了新思路。

     

  • 图 1  临近空间飞行器能源系统

    Figure 1.  Near-space vehicle energy system

    图 2  太阳和飞行器位置

    Figure 2.  Sun and vehicle position

    图 3  太阳电池子阵位置

    Figure 3.  Position of solar cell subarray

    图 4  全年中各太阳电池子阵发电功率

    Figure 4.  Power generated by each solar cell subarray throughout the year

    图 5  不同偏航角下各太阳电池子阵发电功率

    Figure 5.  Power generated by each solar cell subarray under different yaw angles

    图 6  变换器复用架构示意图

    Figure 6.  Schematic diagram of the converter multiplexing topology

    图 7  变化器复用架构中能量流动

    Figure 7.  Energy flow in the converter multiplexing topology

    图 8  飞行器静止时太阳电池子阵发电功率及后级变换器功率分配

    Figure 8.  Power generated by the solar cell subarray and back-converter power distribution with a stationary vehicle status

    图 9  飞行器圆周运动时太阳电池子阵发电功率及后级变换器功率分配

    Figure 9.  Power generated by the solar cell subarray and back-converter power distribution during the vehicle is moving in circle

    图 10  M1失效后的架构工作示意图

    Figure 10.  Schematic diagram of how the architecture works after M1 failure

    表  1  发电功率计算模型中的参数

    Table  1.   Parameters of the generation power calculation model

    飞行
    高度/km
    飞行
    纬度/(°)
    太阳电池阵列
    对应圆心角/(°)
    阵列
    面积/m2
    阵列轴向
    长度/m
    20 北纬39.9 120 500 50
    下载: 导出CSV
  • [1] ZHANG L C, ZHU W Y, DU H F, et al. Multidisciplinary design of high altitude airship based on solar energy optimization[J]. Aerospace Science and Technology, 2021, 110: 106440. doi: 10.1016/j.ast.2020.106440
    [2] RAMESH S S, LIM K M, LEE H P, et al. Reduced-order modeling of stratospheric winds and its application in high-altitude balloon trajectory simulations[J]. Journal of Applied Meteorology and Climatology, 2017, 56(6): 1753-1766. doi: 10.1175/JAMC-D-16-0294.1
    [3] 高阳, 徐国宁, 王生, 等. 平流层飞艇能源系统建模与小信号稳定性分析[J]. 太阳能学报, 2022, 43(8): 50-57.

    GAO Y, XU G N, WANG S, et al. Modeling and small signal stability analysis of stratospheric airship energy system[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 50-57(in Chinese).
    [4] JIANG Y, LV M Y, WANG C Z, et al. Layout optimization of stratospheric balloon solar array based on energy production[J]. Energy, 2021, 229: 120636. doi: 10.1016/j.energy.2021.120636
    [5] ZHANG L C, LV M Y, ZHU W Y, et al. Mission-based multidisciplinary optimization of solar-powered hybrid airship[J]. Energy Conversion and Management, 2019, 185: 44-54. doi: 10.1016/j.enconman.2019.01.098
    [6] LI J, LV M Y, TAN D J, et al. Output performance analyses of solar array on stratospheric airship with thermal effect[J]. Applied Thermal Engineering, 2016, 104: 743-750. doi: 10.1016/j.applthermaleng.2016.05.122
    [7] 朱炳杰, 杨希祥, 麻震宇, 等. 平流层飞艇太阳电池系统产能分析[J]. 国防科技大学学报, 2019, 41(1): 13-18. doi: 10.11887/j.cn.201901003

    ZHU B J, YANG X X, MA Z Y, et al. Power analysis of stratospheric airship’s solar array system[J]. Journal of National University of Defense Technology, 2019, 41(1): 13-18(in Chinese). doi: 10.11887/j.cn.201901003
    [8] 王旭巍, 李兆杰, 张衍垒, 等. 结合平流层飞艇姿态的太阳辐射强度分布[J]. 国防科技大学学报, 2022, 44(6): 30-37. doi: 10.11887/j.cn.202206005

    WANG X W, LI Z J, ZHANG Y L, et al. Solar radiation intensity distribution combined with stratospheric airship flying gesture[J]. Journal of National University of Defense Technology, 2022, 44(6): 30-37(in Chinese). doi: 10.11887/j.cn.202206005
    [9] JIANG Y, LV M Y, CHEN X Y, et al. An optimization approach for improving the solar array output power of stratospheric aerostat[J]. Aerospace Science and Technology, 2021, 118: 106916. doi: 10.1016/j.ast.2021.106916
    [10] 刘乾石, 徐国宁, 李兆杰, 等. 不规则太阳电池临近空间发电模型构建与分析[J]. 太阳能学报, 2022, 43(7): 73-79.

    LIU Q S, XU G N, LI Z J, et al. Research and analysis of irregular solar cells power generation model in near space[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 73-79(in Chinese).
    [11] 郑威, 宋琦, 李勇, 等. 平流层飞艇太阳电池阵发电功率计算及分析[J]. 宇航学报, 2010, 31(4): 1224-1230. doi: 10.3873/j.issn.1000-1328.2010.04.046

    ZHENG W, SONG Q, LI Y, et al. Computation and analysis of power generated by the solar cell array of a stratospheric airship[J]. Journal of Astronautics, 2010, 31(4): 1224-1230(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.04.046
    [12] ZHANG L C, LV M Y, MENG J H, et al. Optimization of solar-powered hybrid airship conceptual design[J]. Aerospace Science and Technology, 2017, 65: 54-61. doi: 10.1016/j.ast.2017.02.016
    [13] LV M Y, LI J, DU H F, et al. Solar array layout optimization for stratospheric airships using numerical method[J]. Energy Conversion and Management, 2017, 135: 160-169. doi: 10.1016/j.enconman.2016.12.080
    [14] YANG X X, LIU D N. Renewable power system simulation and endurance analysis for stratospheric airships[J]. Renewable Energy, 2017, 113: 1070-1076. doi: 10.1016/j.renene.2017.06.077
    [15] JIANG Y, LV M Y, SUN K W. Effects of installation angle on the energy performance for photovoltaic cells during airship cruise flight[J]. Energy, 2022, 258: 124982. doi: 10.1016/j.energy.2022.124982
    [16] ZHANG L C, LI J, WU Y F, et al. Analysis of attitude planning and energy balance of stratospheric airship[J]. Energy, 2019, 183: 1089-1103. doi: 10.1016/j.energy.2019.07.002
    [17] SONG K Y, LI Z J, ZHANG Y L, et al. Power generation calculation model and validation of solar array on stratospheric airships[J]. Energies, 2023, 16(20): 7106. doi: 10.3390/en16207106
    [18] 杨威宇, 徐国宁, 李兆杰, 等. 太阳电池在临近空间发电影响因素研究[J]. 太阳能学报, 2021, 42(12): 476-485.

    YANG W Y, XU G N, LI Z J, et al. Influence factors of solar cell power generation in near space[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 476-485(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  66
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 录用日期:  2024-01-19
  • 网络出版日期:  2024-02-08
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答