Anti-frequency sweeping jamming method for linear frequency modulated fuze based on CFAR detection
-
摘要:
针对线性调频引信受扫频式干扰后易出现的“早炸”和“瞎火”问题,提出了一种恒虚警率(CFAR)检测与Burg外推法结合的干扰剔除与信号重构方法。该方法根据线性调频引信目标回波差频信号同干扰差频信号在时频域平面的分布差异,利用CFAR检测干扰差频信号的时频分布,并将干扰所在位置能量置零,从而剔除干扰对引信的影响;针对干扰置零法引起的目标回波信号部分片段丢失、信噪比下降等问题,提出了基于Burg外推法的信号重构方法,重构置零区间内的目标回波差频信号。通过仿真和实测验证了所提方法的性能,结果表明:所提方法可有效抑制线性调频引信差频信号中的干扰成分。
Abstract:In response to the problems of “premature explosion” and “misfire” caused by sweeping jamming in frequency modulated fuzes, a jamming elimination and signal reconstruction method combining constant false alarm rate (CFAR) detection and Burg extrapolation is proposed. To eliminate the impact of jamming on the fuzes, the technique uses a CFAR detector to detect the time-frequency distribution of the jamming and sets the signal energy of the jamming position to zero. This is based on the distribution differences between the target echo signal and the jamming of the beat signal in the time-frequency domain. A Burg extrapolation-based signal reconstruction technique is suggested to rebuild the target echo during the zeroing interval, aiming to address issues like partial fragment loss and the decrease in signal-to-noise ratio brought on by zeroing. The performance of the method is verified by simulation and actual measurement. The outcomes demonstrate that the anti-jamming method put forth in this research is capable of successfully suppressing sweep interference in the frequency modulated fuze beat signal.
-
表 1 仿真参数
Table 1. Simulation parameters
参数 数值 中心频率/GHz 77 调制周期/μs 60 调制带宽/MHz 1798 扫频带宽/MHz 1798 干扰调制周期/μs 3000 信干噪比/dB −12 表 2 实验雷达系统参数设置
Table 2. Experimental radar parameter settings
参数 数值 中心频率/GHz 77 调制带宽/MHz 1798.92 调制斜率/(MHz·μs−1) 29.982 采样点数/(个·chrip−1) 256 -
[1] 崔占忠, 宋世和, 徐立新, 等. 近感引信原理[M]. 4版. 北京: 北京理工大学出版社, 2018: 68.CUI Z Z, SONG S H, XU L X, et al. Principles of proximity fuze[M]. 4th ed. Beijing: Beijing Institute of Technology Press, 2018: 68(in Chinese). [2] 赵惠昌. 无线电引信设计原理与方法[M]. 北京: 国防工业出版社, 2012: 35-46.ZHAO H C. Fundamentals and methodology of radio fuze[M]. Beijing: National Defense Industry Press, 2012: 35-46(in Chinese). [3] 李泽, 闫晓鹏, 栗苹, 等. 扫频式干扰对调频多普勒引信的干扰机理研究[J]. 兵工学报, 2017, 38(9): 1716-1722.LI Z, YAN X P, LI P, et al. Jamming mechanism of frequency sweep jamming to FM Doppler fuze[J]. Acta Armamentarii, 2017, 38(9): 1716-1722(in Chinese). [4] 王哲, 郝新红, 郭晨曦, 等. 针对调频引信的窄带扫频式干扰优化方法[J]. 强激光与粒子束, 2017, 29(10): 103201.WANG Z, HAO X H, GUO C X, et al. Optimized narrow-band sweep jamming approach for frequency-modulated continuous-wave radio fuze[J]. High Power Laser and Particle Beams, 2017, 29(10): 103201(in Chinese). [5] 孔志杰, 郝新红, 栗苹, 等. 基于时序及相关检测的调频引信抗扫频干扰方法[J]. 兵工学报, 2017, 38(8): 1483-1489.KONG Z J, HAO X H, LI P, et al. Research on anti-frequency sweeping jamming method for frequency modulation fuze based on timing sequence and correlation detection[J]. Acta Armamentarii, 2017, 38(8): 1483-1489(in Chinese). [6] 陈齐乐, 郝新红, 闫晓鹏, 等. 基于谐波系数幅值平均的复合调制引信抗扫频式干扰方法[J]. 北京航空航天大学学报, 2020, 46(7): 1317-1324.CHEN Q L, HAO X H, YAN X P, et al. Anti sweep jamming method of hybrid modulation fuze based on harmonic coefficient amplitude averaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1317-1324(in Chinese). [7] 杨瑾, 郝新红, 周文, 等. 基于异值检测及干扰样本归零的调频引信抗扫频干扰方法[J]. 探测与控制学报, 2023, 45(5): 22-26.YANG J, HAO X H, ZHOU W, et al. FM fuze anti sweep interference based on heterogeneity detection and zero interference samples[J]. Journal of Detection & Control, 2023, 45(5): 22-26(in Chinese). [8] BARJENBRUCH M, KELLNER D, DIETMAYER K, et al. A method for interference cancellation in automotive radar[C]//Proceedings of the 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility. Piscataway: IEEE Press, 2015: 1-4. [9] NOZAWA T, MAKINO Y, TAKAYA N, et al. An anti-collision automotive FMCW radar using time-domain interference detection and suppression[C]//Proceedings of the International Conference on Radar Systems. London: IET, 2018: 1-5. [10] JIN F, CAO S Y. Automotive radar interference mitigation using adaptive noise canceller[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3747-3754. doi: 10.1109/TVT.2019.2901493 [11] 张天鹏, 刘忙龙, 谢嘉. 基于FRFT的调频引信LFM干扰抑制改进方法[J]. 探测与控制学报, 2019, 41(2): 22-25.ZHANG T P, LIU M L, XIE J. Improvement of FM fuze LFM interference suppression based on FRFT[J]. Journal of Detection & Control, 2019, 41(2): 22-25(in Chinese). [12] 刘冰, 郝新红, 周文, 等. 基于BAS-BPNN的调频无线电引信目标与扫频干扰识别方法[J]. 兵工学报, 2023, 44(8): 2391-2403.LIU B, HAO X H, ZHOU W, et al. Recognition method of target and sweep jamming signal for FM radio fuze based on BAS-BPNN[J]. Acta Armamentarii, 2023, 44(8): 2391-2403(in Chinese). [13] MUN J, KIM H, LEE J. A deep learning approach for automotive radar interference mitigation[C]//Proceedings of the 2018 IEEE 88th Vehicular Technology Conference. Piscataway: IEEE Press, 2019: 1-5. [14] RISTEA N C, ANGHEL A, IONESCU R T. Fully convolutional neural networks for automotive radar interference mitigation[C]//Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference. Piscataway: IEEE Press, 2021: 1-5. [15] JALIL A, YOUSAF H, BAIG M I. Analysis of CFAR techniques[C]//Proceedings of the 2016 13th International Bhurban Conference on Applied Sciences and Technology. Piscataway: IEEE Press, 2016: 654-659. [16] ABDULLAH J, KAMAL M S. Multi-targets detection in a non-homogeneous radar environment using modified CA-CFAR[C]//Proceedings of the 2019 IEEE Asia-Pacific Conference on Applied Electromagnetics. Piscataway: IEEE Press, 2020: 1-5. [17] LIM S, LEE S, CHOI J H, et al. Mutual interference suppression and signal restoration in automotive FMCW radar systems[J]. IEICE Transactions on Communications, 2019, E102B(6): 1198-1208. [18] LAGRANGE M, MARCHAND S, RAULT J. Long interpolation of audio signals using linear prediction in sinusoidal modeling[J]. Journal of the Audio Engineering Society, 2005, 53(10): 891-905. [19] LEE S, LEE J Y, KIM S C. Mutual interference suppression using wavelet denoising in automotive FMCW radar systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 887-897. doi: 10.1109/TITS.2019.2961235 -


下载: