留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于恒虚警率检测的线性调频引信抗扫频式干扰方法

杨秋燕 郝新红 乔彩霞 杨瑾

杨秋燕,郝新红,乔彩霞,等. 基于恒虚警率检测的线性调频引信抗扫频式干扰方法[J]. 北京航空航天大学学报,2025,51(12):4258-4267 doi: 10.13700/j.bh.1001-5965.2023.0660
引用本文: 杨秋燕,郝新红,乔彩霞,等. 基于恒虚警率检测的线性调频引信抗扫频式干扰方法[J]. 北京航空航天大学学报,2025,51(12):4258-4267 doi: 10.13700/j.bh.1001-5965.2023.0660
YANG Q Y,HAO X H,QIAO C X,et al. Anti-frequency sweeping jamming method for linear frequency modulated fuze based on CFAR detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4258-4267 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0660
Citation: YANG Q Y,HAO X H,QIAO C X,et al. Anti-frequency sweeping jamming method for linear frequency modulated fuze based on CFAR detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4258-4267 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0660

基于恒虚警率检测的线性调频引信抗扫频式干扰方法

doi: 10.13700/j.bh.1001-5965.2023.0660
详细信息
    通讯作者:

    E-mail:haoxinhong@bit.edu.cn

  • 中图分类号: V221+.3;TB553

Anti-frequency sweeping jamming method for linear frequency modulated fuze based on CFAR detection

More Information
  • 摘要:

    针对线性调频引信受扫频式干扰后易出现的“早炸”和“瞎火”问题,提出了一种恒虚警率(CFAR)检测与Burg外推法结合的干扰剔除与信号重构方法。该方法根据线性调频引信目标回波差频信号同干扰差频信号在时频域平面的分布差异,利用CFAR检测干扰差频信号的时频分布,并将干扰所在位置能量置零,从而剔除干扰对引信的影响;针对干扰置零法引起的目标回波信号部分片段丢失、信噪比下降等问题,提出了基于Burg外推法的信号重构方法,重构置零区间内的目标回波差频信号。通过仿真和实测验证了所提方法的性能,结果表明:所提方法可有效抑制线性调频引信差频信号中的干扰成分。

     

  • 图 1  扫频干扰作用下调频引信差频信号

    Figure 1.  The beat signal of frequency modulated fuze affected by sweep jamming

    图 2  CFAR-Burg抗干扰方法流程

    Figure 2.  Diagram of CFAR-Burg anti-jamming method

    图 3  受扫频干扰影响的差频信号时域波形

    Figure 3.  The waveform of the beat signal contaminated by sweep jamming in time domain

    图 4  受扫频干扰影响的差频信号时频分布

    Figure 4.  Spectrogram of the beat signal contaminated by sweep jamming in time-frequency domain

    图 5  干扰检测图

    Figure 5.  The map of the detected interferences

    图 6  基于CFAR-Burg抗干扰处理后差频信号的时频图谱

    Figure 6.  The time-frequency domain spectra of the beat signal after anti-jamming with CFAR-Burg

    图 7  基于CFAR-Burg抗干扰处理后的时域恢复信号

    Figure 7.  The recovered beat signals in time domain after anti-jamming with the CFAR-Burg

    图 8  引信差频信号的距离-速度图谱

    Figure 8.  Distance-velocity spectra of fuze beat signals

    图 9  基于小波去噪得到差频信号的距离-速度图谱

    Figure 9.  Distance-velocity spectra of beat signal after WD

    图 10  不同信干噪比条件下不同方法抗干扰性能

    Figure 10.  Anti-jamming performance of various approach under different SINR

    图 11  实验场景示意图

    Figure 11.  Schematic diagram of the experimental scene

    图 12  实验采集到的差频信号时域波形

    Figure 12.  The waveform of the beat signal in time domain collected in the experiment

    图 13  差频信号的时频图谱

    Figure 13.  Spectrogram of beat signal in time-frequency domain

    图 14  实测干扰检测图

    Figure 14.  The measured map of the detected interferences

    图 15  基于CFAR-Burg抗干扰处理后实测差频信号的时频图谱

    Figure 15.  The time-frequency domain spectra of measured beat signal after anti-jamming with CFAR-Burg

    图 16  基于CFAR-Burg抗干扰处理后的实测时域恢复信号

    Figure 16.  The measured recovered beat signals in time-frequency domain after anti-jamming with the CFAR-Burg

    图 17  实测差频信号的距离-速度图谱

    Figure 17.  Distance-velocity spectra of measured beat signal

    图 18  实测差频信号去干扰后的距离维检测结果

    Figure 18.  Detection results in distance domain of measured beat signal after interference mitigation

    表  1  仿真参数

    Table  1.   Simulation parameters

    参数 数值
    中心频率/GHz 77
    调制周期/μs 60
    调制带宽/MHz 1798
    扫频带宽/MHz 1798
    干扰调制周期/μs 3000
    信干噪比/dB −12
    下载: 导出CSV

    表  2  实验雷达系统参数设置

    Table  2.   Experimental radar parameter settings

    参数 数值
    中心频率/GHz 77
    调制带宽/MHz 1798.92
    调制斜率/(MHz·μs−1) 29.982
    采样点数/(个·chrip−1) 256
    下载: 导出CSV
  • [1] 崔占忠, 宋世和, 徐立新, 等. 近感引信原理[M]. 4版. 北京: 北京理工大学出版社, 2018: 68.

    CUI Z Z, SONG S H, XU L X, et al. Principles of proximity fuze[M]. 4th ed. Beijing: Beijing Institute of Technology Press, 2018: 68(in Chinese).
    [2] 赵惠昌. 无线电引信设计原理与方法[M]. 北京: 国防工业出版社, 2012: 35-46.

    ZHAO H C. Fundamentals and methodology of radio fuze[M]. Beijing: National Defense Industry Press, 2012: 35-46(in Chinese).
    [3] 李泽, 闫晓鹏, 栗苹, 等. 扫频式干扰对调频多普勒引信的干扰机理研究[J]. 兵工学报, 2017, 38(9): 1716-1722.

    LI Z, YAN X P, LI P, et al. Jamming mechanism of frequency sweep jamming to FM Doppler fuze[J]. Acta Armamentarii, 2017, 38(9): 1716-1722(in Chinese).
    [4] 王哲, 郝新红, 郭晨曦, 等. 针对调频引信的窄带扫频式干扰优化方法[J]. 强激光与粒子束, 2017, 29(10): 103201.

    WANG Z, HAO X H, GUO C X, et al. Optimized narrow-band sweep jamming approach for frequency-modulated continuous-wave radio fuze[J]. High Power Laser and Particle Beams, 2017, 29(10): 103201(in Chinese).
    [5] 孔志杰, 郝新红, 栗苹, 等. 基于时序及相关检测的调频引信抗扫频干扰方法[J]. 兵工学报, 2017, 38(8): 1483-1489.

    KONG Z J, HAO X H, LI P, et al. Research on anti-frequency sweeping jamming method for frequency modulation fuze based on timing sequence and correlation detection[J]. Acta Armamentarii, 2017, 38(8): 1483-1489(in Chinese).
    [6] 陈齐乐, 郝新红, 闫晓鹏, 等. 基于谐波系数幅值平均的复合调制引信抗扫频式干扰方法[J]. 北京航空航天大学学报, 2020, 46(7): 1317-1324.

    CHEN Q L, HAO X H, YAN X P, et al. Anti sweep jamming method of hybrid modulation fuze based on harmonic coefficient amplitude averaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1317-1324(in Chinese).
    [7] 杨瑾, 郝新红, 周文, 等. 基于异值检测及干扰样本归零的调频引信抗扫频干扰方法[J]. 探测与控制学报, 2023, 45(5): 22-26.

    YANG J, HAO X H, ZHOU W, et al. FM fuze anti sweep interference based on heterogeneity detection and zero interference samples[J]. Journal of Detection & Control, 2023, 45(5): 22-26(in Chinese).
    [8] BARJENBRUCH M, KELLNER D, DIETMAYER K, et al. A method for interference cancellation in automotive radar[C]//Proceedings of the 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility. Piscataway: IEEE Press, 2015: 1-4.
    [9] NOZAWA T, MAKINO Y, TAKAYA N, et al. An anti-collision automotive FMCW radar using time-domain interference detection and suppression[C]//Proceedings of the International Conference on Radar Systems. London: IET, 2018: 1-5.
    [10] JIN F, CAO S Y. Automotive radar interference mitigation using adaptive noise canceller[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3747-3754. doi: 10.1109/TVT.2019.2901493
    [11] 张天鹏, 刘忙龙, 谢嘉. 基于FRFT的调频引信LFM干扰抑制改进方法[J]. 探测与控制学报, 2019, 41(2): 22-25.

    ZHANG T P, LIU M L, XIE J. Improvement of FM fuze LFM interference suppression based on FRFT[J]. Journal of Detection & Control, 2019, 41(2): 22-25(in Chinese).
    [12] 刘冰, 郝新红, 周文, 等. 基于BAS-BPNN的调频无线电引信目标与扫频干扰识别方法[J]. 兵工学报, 2023, 44(8): 2391-2403.

    LIU B, HAO X H, ZHOU W, et al. Recognition method of target and sweep jamming signal for FM radio fuze based on BAS-BPNN[J]. Acta Armamentarii, 2023, 44(8): 2391-2403(in Chinese).
    [13] MUN J, KIM H, LEE J. A deep learning approach for automotive radar interference mitigation[C]//Proceedings of the 2018 IEEE 88th Vehicular Technology Conference. Piscataway: IEEE Press, 2019: 1-5.
    [14] RISTEA N C, ANGHEL A, IONESCU R T. Fully convolutional neural networks for automotive radar interference mitigation[C]//Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference. Piscataway: IEEE Press, 2021: 1-5.
    [15] JALIL A, YOUSAF H, BAIG M I. Analysis of CFAR techniques[C]//Proceedings of the 2016 13th International Bhurban Conference on Applied Sciences and Technology. Piscataway: IEEE Press, 2016: 654-659.
    [16] ABDULLAH J, KAMAL M S. Multi-targets detection in a non-homogeneous radar environment using modified CA-CFAR[C]//Proceedings of the 2019 IEEE Asia-Pacific Conference on Applied Electromagnetics. Piscataway: IEEE Press, 2020: 1-5.
    [17] LIM S, LEE S, CHOI J H, et al. Mutual interference suppression and signal restoration in automotive FMCW radar systems[J]. IEICE Transactions on Communications, 2019, E102B(6): 1198-1208.
    [18] LAGRANGE M, MARCHAND S, RAULT J. Long interpolation of audio signals using linear prediction in sinusoidal modeling[J]. Journal of the Audio Engineering Society, 2005, 53(10): 891-905.
    [19] LEE S, LEE J Y, KIM S C. Mutual interference suppression using wavelet denoising in automotive FMCW radar systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 887-897. doi: 10.1109/TITS.2019.2961235
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  30
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-12
  • 录用日期:  2023-12-08
  • 网络出版日期:  2024-01-26
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答