Health assessment method of nose landing gear hydraulic retraction/extension system based on GRNN
-
摘要:
随着民用飞机健康管理技术的不断发展,飞机重要系统及部件的状态监测数据不断丰富。前起落架液压收放系统的健康状态对飞机起降的影响较大,该系统虽然具备多维监测参数,但难以有效利用系统监测数据准确评估其健康状态。基于此,针对前起落架液压收放系统健康评估问题,通过AMESim软件建模,构建系统的仿真模型,研究前起落架收放性能受液压元件参数性能变化的影响。使用前起落架收放作动筒不同等级故障时的性能数据作为原始数据,提取收上时间、流速最大值等表征参数,提出基于广义回归神经网络(GRNN)的健康指数构造方法,可以更加有效地对该系统的健康状态进行评估,通过方法对比证明了其有效性和准确性。
Abstract:The condition monitoring data of critical aircraft systems and components has been continuously improved with the ongoing advancement of civil aircraft health management technology.The health status of the nose landing gear hydraulic retraction/extension system has a great influence on the take-off and landing of the aircraft. Although the system has multi-dimensional monitoring parameters, it is difficult to effectively use the monitoring data to accurately evaluate its health status. Aiming at the health assessment of the landing gear hydraulic retraction/extension system of a domestically developed regional aircraft, this paper constructs a simulation model of the system through AMESim, so as to study the influence of the working performance of the system due to the change of component parameter performance in the circuit. Previously, the performance data of different levels of the landing gear retraction/extension cylinder were the original data. In order to better assess the system’s health, a health index generation approach based on the generalized regression neural network (GRNN) was put forth after the feature parameters, such as the closing time and the maximum flow rate, were retrieved. The effectiveness is verified by comparing the results with other methods.
-
表 1 部分训练集数据
Table 1. Parts of training set data
样本 $ {x_{1,1}} $ $ {x_{1,2}} $ $ {x_{1,7}} $ $ {x_{1,11}} $ $ {x_{1,27}} $ $ {x_{1,31}} $ $ {y_{{\text{train}}}} $ 1 7.55 9.60 205.539 0 −5.688 1.584 0 2 8.10 8.17 172.257 8.297 −4.100 1.659 0.06 3 10.47 5.62 127.200 12.511 −2.146 2.502 0.25 4 11.32 5.21 123.445 12.800 −1.843 2.560 0.30 5 7.64 9.33 203.040 2.000 −5.387 1.587 0.01 6 9.21 6.58 138.609 11.590 −2.862 2.318 0.16 $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ 表 2 各方法评价指标对比
Table 2. Comparison of evaluation indicators of various methods
方法 MAE RMSE MAPE/% SMAPE/% 多元非线性拟合 0.0253 0.03908 19.1621 17.5161 BPNN 0.0218 0.02350 26.2809 21.3723 GRNN 0.0031 0.00420 2.3901 2.3926 -
[1] 周长聪, 吉梦瑶, 张屹尚, 等. 多失效模式下起落架机构可靠性及灵敏度研究[J]. 西北工业大学学报, 2021, 39(1): 46-54. doi: 10.3969/j.issn.1000-2758.2021.01.006ZHOU C C, JI M Y, ZHANG Y S, et al. Mechanism reliability and sensitivity analysis of landing gear under multiple failure modes[J]. Journal of Northwestern Polytechnical University, 2021, 39(1): 46-54(in Chinese). doi: 10.3969/j.issn.1000-2758.2021.01.006 [2] ZONTA T, DA COSTA C A, DA ROSA RIGHI R, et al. Predictive maintenance in the industry 4.0: a systematic literature review[J]. Computers & Industrial Engineering, 2020, 150: 106889. [3] 张可, 周东华, 柴毅. 复合故障诊断技术综述[J]. 控制理论与应用, 2015, 32(9): 1143-1157. doi: 10.7641/CTA.2015.50262ZHANG K, ZHOU D H, CHAI Y. Review of multiple fault diagnosis methods[J]. Control Theory and Applications, 2015, 32(9): 1143-1157(in Chinese). doi: 10.7641/CTA.2015.50262 [4] 胡晓义, 王如平, 王鑫, 等. 基于模型的复杂系统安全性和可靠性分析技术发展综述[J]. 航空学报, 2020, 41(6): 147-158.HU X Y, WANG R P, WANG X, et al. Recent development of safety and reliability analysis technology for model-based complex system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 147-158(in Chinese). [5] 徐丙凤, 黄志球, 胡军, 等. 一种状态事件故障树的定量分析方法[J]. 电子学报, 2013, 41(8): 1480-1486. doi: 10.3969/j.issn.0372-2112.2013.08.005XU B F, HUANG Z Q, HU J, et al. A method for quantitative analysis of state/event fault tree[J]. Acta Electronica Sinica, 2013, 41(8): 1480-1486(in Chinese). doi: 10.3969/j.issn.0372-2112.2013.08.005 [6] 陈新霞, 刘煜原, 黄加阳, 等. 基于贝叶斯网络推理的起落架系统故障诊断技术研究[J]. 计算机测量与控制, 2016, 24(10): 24-27.CHEN X X, LIU Y Y, HUANG J Y, et al. Fault diagnosis of landing gear system based on Bayesian network inference[J]. Computer Measurement & Control, 2016, 24(10): 24-27(in Chinese). [7] 丰赢政. 基于AE-RNN的飞机起落架液压收放系统故障诊断方法研究[D]. 南京: 南京航空航天大学, 2023.FENG Y Z. Research on fault diagnosis algorithms of the hydraulic retractable system of aircraft landing gear based on AE-RNN[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023(in Chinese). [8] 崔建国, 李鹏程, 崔霄, 等. 基于ARIMA-LSTM的飞机液压泵性能趋势预测方法[J]. 振动、测试与诊断, 2021, 41(4): 735-740.CUI J G, LI P C, CUI X, et al. Aircraft hydraulic pump performance trend prediction method based on ARIMA-LSTM[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(4): 735-740(in Chinese). [9] BYKOV A D, VORONOV V I, VORONOVA L I. Machine learning methods applying for hydraulic system states classification[C]//Proceedings of the Systems of Signals Generating and Processing in the Field of on Board Communications. Piscataway: IEEE Press, 2019: 1-4. [10] 冯蕴雯, 王锐, 卢涛, 等. 基于多策略协同优化神经网络的起落架状态监测[J]. 西北工业大学学报, 2023, 41(2): 264-273. doi: 10.3969/j.issn.1000-2758.2023.02.003FENG Y W, WANG R, LU T, et al. Landing gear condition monitoring based on back propagation neural network-based on multi-strategy cooperative optimization[J]. Journal of Northwestern Polytechnical University, 2023, 41(2): 264-273(in Chinese) . doi: 10.3969/j.issn.1000-2758.2023.02.003 [11] 李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术[J]. 自动化学报, 2022, 48(9): 2119-2141.LI T M, SI X S, LIU X, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data[J]. Acta Automatica Sinica, 2022, 48(9): 2119-2141(in Chinese). [12] 汪俊亮, 高鹏捷, 张洁, 等. 制造大数据分析综述: 内涵、方法、应用和趋势[J]. 机械工程学报, 2023, 59(12): 1-16. doi: 10.3901/JME.2023.12.001WANG J L, GAO P J, ZHANG J, et al. A review of manufacturing big data: connotation, methodology, application and trends[J]. Journal of Mechanical Engineering, 2023, 59(12): 1-16(in Chinese). doi: 10.3901/JME.2023.12.001 [13] 窦丹丹, 姜洪开, 何毅娜. 基于信息熵和SVM多分类的飞机液压系统故障诊断[J]. 西北工业大学学报, 2012, 30(4): 529-534. doi: 10.3969/j.issn.1000-2758.2012.04.010DOU D D, JIANG H K, HE Y N. Effectively diagnosing faults for aircraft hydraulic system based on information entropy and multi-classification SVM[J]. Journal of Northwestern Polytechnical University, 2012, 30(4): 529-534(in Chinese). doi: 10.3969/j.issn.1000-2758.2012.04.010 [14] DUAN S X, LI Y J, CAO Y Y, et al. Health assessment of landing gear retraction/extension hydraulic system based on improved risk coefficient and FCE model[J]. Applied Sciences, 2022, 12(11): 5409. doi: 10.3390/app12115409 [15] 刘志伟, 刘锐, 徐劲松, 等. 复杂系统故障预测与健康管理(PHM)技术研究[J]. 计算机测量与控制, 2010, 18(12): 2687-2689.LIU Z W, LIU R, XU J S, et al. Research of complex system’s prognostic and health management[J]. Computer Measurement & Control, 2010, 18(12): 2687-2689(in Chinese). [16] FINK O, WANG Q, SVENSÉN M, et al. Potential, challenges and future directions for deep learning in prognostics and health management applications[J]. Engineering Applications of Artificial Intelligence, 2020, 92: 103678. doi: 10.1016/j.engappai.2020.103678 [17] 周志杰, 曹友, 胡昌华, 等. 基于规则的建模方法的可解释性及其发展[J]. 自动化学报, 2021, 47(6): 1201-1216.ZHOU Z J, CAO Y, HU C H, et al. The interpretability of rule-based modeling approach and its development[J]. Acta Automatica Sinica, 2021, 47(6): 1201-1216(in Chinese). [18] KHAN K, SOHAIB M, RASHID A, et al. Recent trends and challenges in predictive maintenance of aircraft’s engine and hydraulic system[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(8): 403. doi: 10.1007/s40430-021-03121-2 [19] NIU W J, FENG Z K, LI S S, et al. Short-term electricity load time series prediction by machine learning model via feature selection and parameter optimization using hybrid cooperation search algorithm[J]. Environmental Research Letters, 2021, 16(5): 055032. doi: 10.1088/1748-9326/abeeb1 [20] NA X D, HAN M, REN W J, et al. Modified BBO-based multivariate time-series prediction system with feature subset selection and model parameter optimization[J]. IEEE Transactions on Cybernetics, 2022, 52(4): 2163-2173. doi: 10.1109/TCYB.2020.2977375 [21] WANG P J, QIN J H, LI J C, et al. Device status evaluation method based on deep learning for PHM scenarios[J]. Electronics, 2023, 12(3): 779. doi: 10.3390/electronics12030779 [22] 胡晓青, 马存宝, 和麟, 等. 飞机起落架收放系统建模与故障仿真[J]. 计算机工程与科学, 2016, 38(6): 1286-1293. doi: 10.3969/j.issn.1007-130X.2016.06.034HU X Q, MA C B, HE L, et al. Modeling and fault simulation of the landing gear extension and retraction system[J]. Computer Engineering & Science, 2016, 38(6): 1286-1293(in Chinese). doi: 10.3969/j.issn.1007-130X.2016.06.034 [23] SPECHT D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6): 568-576. doi: 10.1109/72.97934 [24] TOMANDL D, SCHOBER A. A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust ‘black box’-tool for data analysis[J]. Neural Networks, 2001, 14(8): 1023-1034. doi: 10.1016/S0893-6080(01)00051-X [25] WANG Z P, ZHAO Y J. Data-driven exhaust gas temperature baseline predictions for aeroengine based on machine learning algorithms[J]. Aerospace, 2023, 10(1): 17. [26] 刘浩然, 赵翠香, 李轩, 等. 一种基于改进遗传算法的神经网络优化算法研究[J]. 仪器仪表学报, 2016, 37(7): 1573-1580. doi: 10.3969/j.issn.0254-3087.2016.07.017LIU H R, ZHAO C X, LI X, et al. Study on a neural network optimization algorithm based on improved genetic algorithm[J]. Chinese Journal of Scientific Instrument, 2016, 37(7): 1573-1580(in Chinese). doi: 10.3969/j.issn.0254-3087.2016.07.017 [27] 邱寒雨, 张春峰, 徐兵, 等. 基于优化BP神经网络的快速起竖装置液压驱动系统故障诊断[J]. 液压与气动, 2021, 45(3): 1-6. doi: 10.11832/j.issn.1000-4858.2021.03.001QIU H Y, ZHANG C F, XU B, et al. Fault diagnosis of hydraulic drive system of rapid-erection device based on optimized BP neural network[J]. Chinese Hydraulics & Pneumatics, 2021, 45(3): 1-6(in Chinese). doi: 10.11832/j.issn.1000-4858.2021.03.001 -


下载: