留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速钝体壁面斯坦顿数的求解方法

赵金鹏 曾伟 马海腾

赵金鹏,曾伟,马海腾. 超声速钝体壁面斯坦顿数的求解方法[J]. 北京航空航天大学学报,2025,51(12):4361-4369 doi: 10.13700/j.bh.1001-5965.2023.0800
引用本文: 赵金鹏,曾伟,马海腾. 超声速钝体壁面斯坦顿数的求解方法[J]. 北京航空航天大学学报,2025,51(12):4361-4369 doi: 10.13700/j.bh.1001-5965.2023.0800
ZHAO J P,ZENG W,MA H T. Method for determining Stanton number on blunt body in supersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4361-4369 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0800
Citation: ZHAO J P,ZENG W,MA H T. Method for determining Stanton number on blunt body in supersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4361-4369 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0800

超声速钝体壁面斯坦顿数的求解方法

doi: 10.13700/j.bh.1001-5965.2023.0800
基金项目: 

国家自然科学基金(52106050);先进航空动力创新工作站(依托中国航空发动机研究院设立)资助项目(HKCX2022-02-003);上海交通大学“交大之星”计划医工交叉研究基金(YG2021QN36);上海市自然科学基金(21ZR1431800)

详细信息
    通讯作者:

    E-mail:haiteng.ma@sjtu.edu.cn

  • 中图分类号: V411.3

Method for determining Stanton number on blunt body in supersonic flow

Funds: 

National Natural Science Foundation of China (52106050); Advanced Jet Propulsion Innovation Center, AEAC (HKCX2022-02-003); Interdisciplinary Research Project by Shanghai Jiao Tong University (YG2021QN36); Natural Science Foundation of Shanghai (21ZR1431800)

More Information
  • 摘要:

    斯坦顿数是评价飞行器气动热性能的重要指标,但其求解方法尚有分歧,主要体现在对流换热驱动温度的确定方式上。当前常用的2种方法均基于解析公式获得驱动温度,统称为“解析法”:第1种方法选取来流总温作为驱动温度,第2种方法选取高速流动外掠平板时的壁面恢复温度作为驱动温度。鉴于此,以驱动温度等于绝热壁温的方法为基准,通过数值仿真对比了上述2种解析法与新引入的双壁温法(即由2组等温壁面算例的结果作差获得对流换热系数)在求解钝体壁面斯坦顿数时的准确性。结果表明:双壁温法所得斯坦顿数与基准方法的吻合度远高于2种解析法,其壁面平均斯坦顿数与基准方法的相对偏差在5%以内,而2种解析法的相对偏差均大于15%。此外,双壁温法所得驱动温度沿钝体圆周角的变化趋势与绝热壁温一致,而2种解析法所得驱动温度在各圆周角下均为定值,不符合物理规律。

     

  • 图 1  模型及边界条件示意图

    Figure 1.  Schematic diagram of model and boundary conditions

    图 2  计算网格

    Figure 2.  Computational mesh topology

    图 3  不同网格数下钝体静压与斯坦顿数沿圆周角分布

    Figure 3.  Distribution of static pressure and Stanton number along the circumferential angle on the blunt body for different grid sizes

    图 4  RANS模型与实验钝体静压与斯坦顿数沿圆周角分布

    Figure 4.  Distribution of static pressure and Stanton number along the circumferential angle on the blunt body, obtained from RANS models and experiment

    图 5  数值结果密度梯度云图与文献[15]实验纹影图对比

    Figure 5.  Contour of density gradient magnitude from numerical result and Schlieren visualization data from experiment by referenees [15]

    图 6  $\dot q = f({T_{\text{w}}})$的非线性示意图[25]

    Figure 6.  Nonlinear diagram of $\dot q = f({T_{\text{w}}})$ [25]

    图 7  温差为2 K、5 K、10 K、30 K与80 K时,钝体换热系数沿圆周角分布

    Figure 7.  Distribution of heat transfer coefficient along the circumferential angle on the blunt body, for ΔT of2 K, 5 K, 10 K, 30 K and 80 K

    图 8  不同壁面温度下,不同方法所得驱动温度沿圆周角分布

    Figure 8.  Distribution of driving temperature along the circumferential angle on the blunt body, obtained from different methods at different wall temperatures

    图 9  恒温壁Tw =295 K时,不同方法所得壁面斯坦顿数沿圆周角分布

    Figure 9.  Distribution of Stanton number along the circumferential angle on the blunt body, obtained from different methods at an isothermal wall of Tw=295 K

    图 10  恒温壁${T_{\text{w}}}$=295 K时,解析法与双壁温法所得斯坦顿数与基准方法之间的差值百分数

    Figure 10.  Percentage difference of Stanton number obtained by analytical method and two-point method compared to the baseline method, for the isothermal wall of Tw=295 K

    图 11  绝热壁面与等温壁面2个工况下,无量纲气动热参数沿2个圆周角边界层的分布

    Figure 11.  Distribution of the non-dimensional aerothermal parameter across the boundary layer at two circumferential angles, calculated by the case with adiabatic wall and isothermal wall, respectively

    图 12  不同壁面温度下,解析法与双壁温法所得平均斯坦顿数与基准方法之间的差值百分比

    Figure 12.  Percentage difference of average Stanton number obtained by analytical method and two-point method compared to the baseline method, at different isothermal wall temperatures

    图 13  D=25 mm, Tw =295 K时,不同方法所得壁面斯坦顿数沿圆周角分布

    Figure 13.  Distribution of Stanton number along the circumferential angle on the blunt body, obtained from different methods at D=25 mm and Tw=295 K

    图 14  D=25 mm, ${T_{\text{w}}}$=295 K时,解析法与双壁温法所得斯坦顿数与基准方法之间的差值百分数

    Figure 14.  Percentage difference of Stanton number obtained by analytical method and two-point method compared to the baseline method, when D=25 mm and Tw=295 K

    表  1  流动条件

    Table  1.   Flow conditions

    参数数值
    马赫数3.98
    来流总压/MPa1.37
    来流总温/K397
    壁面温度/K295/300
    单位雷诺数/m−14.2×107
    下载: 导出CSV

    表  2  网格独立性研究参数

    Table  2.   Parameters of mesh independence study

    网格数 首层网格高度/m 增长率 网格雷诺数 平均斯坦顿数
    125 000 4×10−7 1.2 16 0.00 429
    147 000 2×10−7 1.1 8 0.00 442
    205 000 1×10−7 1.1 4 0.00 441
    下载: 导出CSV
  • [1] ZHU L, LI Y K, CHEN X, et al. Novel combinational aerodisk and lateral jet concept for drag and heat reduction in hypersonic flows[J]. Journal of Aerospace Engineering, 2019, 32: 04018133. doi: 10.1061/(ASCE)AS.1943-5525.0000966
    [2] CHEN F, LIU H, ZHANG S T. Coupled heat transfer and thermo-mechanical behavior of hypersonic cylindrical leading edges[J]. International Journal of Heat and Mass Transfer, 2018, 122: 846-862. doi: 10.1016/j.ijheatmasstransfer.2018.02.037
    [3] ZENG K C, XIANG J W, LI D C. Aeroservoelastic modeling and analysis of a canard-configured air-breathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2013, 26(4): 831-840. doi: 10.1016/j.cja.2013.06.001
    [4] GUO J, HUANG H M, XU X L. Protective effect of pyrolysis gases combustion against surface ablation under different Mach numbers[J]. Acta Astronautica, 2020, 166: 209-217. doi: 10.1016/j.actaastro.2019.10.032
    [5] CHANG C L, VENKATACHARI B S, CHENG G. Effect of counterflow jet on a supersonic reentry capsule[C]//Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Berlin: AIAA, 2006: 4776.
    [6] ASO S, MIYAMOTO Y, KUROTAKI T, et al. Experimental and computational study on reduction of aerodynamic heating load by film cooling in hypersonic flows[C]//Proceedings of the 35th Aerospace Sciences Meeting and Exhibit. Berlin: AIAA, 1997: 770.
    [7] ZHANG Z K, XU W W, YE W, et al. Heated wind-tunnel experiments and numerical investigations on hypersonic blunt cone aerodynamic heating[J]. Acta Astronautica, 2022, 197: 154-168. doi: 10.1016/j.actaastro.2022.05.021
    [8] KULKARNI V, REDDY K P J. Effect of a supersonic counterflow jet on blunt body heat transfer rates for oncoming high enthalpy flow[J]. Journal of Engineering Physics and Thermophysics, 2009, 82(1): 1-5. doi: 10.1007/s10891-009-0173-1
    [9] DASO E O, PRITCHETT V E, WANG T S, et al. Dynamics of shock dispersion and interactions in supersonic freestreams with counterflowing jets[J]. AIAA Journal, 2009, 47(6): 1313-1326. doi: 10.2514/1.30084
    [10] DECHAUMPHAI P, WIETING A R, THORNTON E A. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4): 201-209. doi: 10.2514/3.26055
    [11] MENEZES V, SARAVANAN S, JAGADEESH G, et al. Experimental investigations of hypersonic flow over highly blunted cones with aerospikes[J]. AIAA Journal, 2003, 41(10): 1955-1966. doi: 10.2514/2.1885
    [12] SAHOO N, KULKARNI V, SARAVANAN S, et al. Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed[J]. Physics of Fluids, 2005, 17(3): 036102. doi: 10.1063/1.1862261
    [13] FU J, YI S H, WANG X H, et al. Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow[J]. Chinese Physics B, 2014, 23(10): 104702. doi: 10.1088/1674-1056/23/10/104702
    [14] HAYASHI K, ASO S, TANI Y. Experimental study on thermal protection system by opposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets, 2006, 43(1): 233-235. doi: 10.2514/1.15332
    [15] HAYASHI K, ASO S. Effect of pressure ratio on aerodynamic heating reduction due to opposing jet[C]//Proceedings of the 36th AIAA Thermophysics Conference. Berlin: AIAA, 2003: 4041.
    [16] DAI S M, MA H T, XU Z R, et al. Numerical study of discrete film cooling near the rudder shaft of a hypersonic air fin model[J]. Numerical Heat Transfer, Part A: Applications, 2024, 85(5): 679-701. doi: 10.1080/10407782.2023.2190939
    [17] ZHANG F, YI S H, XU X W, et al. A swept fin-induced flow field with different height mounting gaps[J]. Chinese Journal of Aeronautics, 2021, 34(1): 148-162. doi: 10.1016/j.cja.2020.09.050
    [18] HUANG W, JIANG Y P, YAN L, et al. Heat flux reduction mechanism induced by a combinational opposing jet and cavity concept in supersonic flows[J]. Acta Astronautica, 2016, 121: 164-171. doi: 10.1016/j.actaastro.2016.01.008
    [19] HUANG W, YAN L, LIU J, et al. Drag and heat reduction mechanism in the combinational opposing jet and acoustic cavity concept for hypersonic vehicles[J]. Aerospace Science and Technology, 2015, 42: 407-414. doi: 10.1016/j.ast.2015.01.029
    [20] 郭建, 方蜀州, 王子玉. 高超声速飞行器减阻杆-双盘-槽道组合构型减阻防热特性研究[J]. 推进技术, 2024, 45(5): 89-99.

    GUO J, FANG S Z, WANG Z Y. Drag and heat flux reduction induced by a novel combinational spike with double aerodisks and channel concept for hypersonic vehicles[J]. Journal of Propulsion Technology, 2024, 45(5): 89-99(in Chinese).
    [21] 许阳, 陈宣亮. 超声速飞行器减阻杆/盘与双喷流组合构型减阻和防热性能[J]. 航空动力学报, 2024, 39(5): 213-230.

    XU Y, CHEN X L. Drag and heat flux reduction performance of supersonic vehicle with combination model of aerospike/aerodisk and double jet[J]. Journal of Aerospace Power, 2024, 39(5): 213-230. (in Chinese).
    [22] 王子玉, 方蜀州, 郭建, 等. 高超声速杆-盘-自耦合冲压横向射流新概念的减阻防热数值模拟[J]. 航空动力学报, 2024, 39(10): 354-366.

    WANG Z Y, FANG S Z, GUO J, et al. Numerical simulation on drag and heat reduction of hypersonic spike-aerodisk-self-coupled stamping lateral jet concept[J]. Journal of Aerospace Power, 2024, 39(10): 354-366 (in Chinese).
    [23] MA H, ZHANG Q, HE L, et al. Cooling injection effect on a transonic squealer tip: part I: experimental heat transfer results and CFD validation[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(5): 052506. doi: 10.1115/1.4035175
    [24] MA H T, ZENG W, JIANG H M, et al. Impact of cooling injection on shock wave over a flat tip in high pressure turbine[J]. Journal of Turbomachinery, 2022, 144: 011012. doi: 10.1115/1.4052135
    [25] MAFFULLI R, HE L. Wall temperature effects on heat transfer coefficient for high-pressure turbines[J]. Journal of Propulsion and Power, 2014, 30(4): 1080-1090. doi: 10.2514/1.B35126
    [26] MAFFULLI R, HE L. Impact of wall temperature on heat transfer coefficient and aerodynamics for three-dimensional turbine blade passage[J]. Journal of Thermal Science and Engineering Applications, 2017, 9(4): 041002. doi: 10.1115/1.4036012
    [27] ZHANG C L, CHANG J T, LIU M M, et al. Effect of heat release on movement characteristics of shock train in an isolator[J]. Acta Astronautica, 2017, 133: 185-194. doi: 10.1016/j.actaastro.2017.01.031
    [28] HUANG W, ZHANG R R, YAN L, et al. Numerical experiment on the flow field properties of a blunted body with a counterflowing jet in supersonic flows[J]. Acta Astronautica, 2018, 147: 231-240. doi: 10.1016/j.actaastro.2018.04.018
    [29] YANG J L, LIU M. A wall grid scale criterion for hypersonic aerodynamic heating calculation[J]. Acta Astronautica, 2017, 136: 137-143. doi: 10.1016/j.actaastro.2016.11.043
    [30] BIBI A, MAQSOOD A, SHERBAZ S, et al. Drag reduction of supersonic blunt bodies using opposing jet and nozzle geometric variations[J]. Aerospace Science and Technology, 2017, 69: 244-256. doi: 10.1016/j.ast.2017.06.007
    [31] KAYS W M, CRAWFORD M E, WEIGAND B, et al. Convective heat and mass transfer[J]. Prandtl’s Essentials of Fluid Mechanics, 1980, 158: 427-452.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  100
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-09
  • 录用日期:  2024-01-12
  • 网络出版日期:  2024-02-20
  • 整期出版日期:  2025-12-31

目录

    /

    返回文章
    返回
    常见问答