留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向无拖曳稳态建立的抗扰模型预测控制

贺雄峰 卢苇 许诺 周齐贤 王鹏程 张永合

贺雄峰,卢苇,许诺,等. 面向无拖曳稳态建立的抗扰模型预测控制[J]. 北京航空航天大学学报,2026,52(2):551-560 doi: 10.13700/j.bh.1001-5965.2024.0380
引用本文: 贺雄峰,卢苇,许诺,等. 面向无拖曳稳态建立的抗扰模型预测控制[J]. 北京航空航天大学学报,2026,52(2):551-560 doi: 10.13700/j.bh.1001-5965.2024.0380
HE X F,LU W,XU N,et al. Disturbance rejection model predictive control for building drag-free steady state[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):551-560 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0380
Citation: HE X F,LU W,XU N,et al. Disturbance rejection model predictive control for building drag-free steady state[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):551-560 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0380

面向无拖曳稳态建立的抗扰模型预测控制

doi: 10.13700/j.bh.1001-5965.2024.0380
详细信息
    通讯作者:

    E-mail:xunuobit@163.com

  • 中图分类号: V448.22

Disturbance rejection model predictive control for building drag-free steady state

More Information
  • 摘要:

    为提升深空引力波探测任务中检验质量释放阶段的控制器抗干扰性能,提出一种面向检验质量稳态建立的基于扰动观测器(DOB)的渐进管道模型预测控制(MPC)方法。采用DOB提高控制器抗干扰性能,利用虚拟回路技术将DOB的设计问题归结为标准$ {H}_{\mathrm{\infty }} $混合灵敏度优化问题,并实现高精度估计。同时,设计渐进管道MPC,利用有效集法求解优化问题,结合DOB的扰动估计值实现强干扰和强执行约束下的高精度检验质量抗扰控制。在航天器-双检验质量全自由度仿真平台上进行仿真验证,在基本噪声及干扰的基础上引入0.1 Hz的正弦干扰和阶跃干扰,结果表明:DOB对扰动实现了准确估计,所提方法能够在干扰下实现对检验质量的高精度控制,同时,对量测噪声起到抑制作用。

     

  • 图 1  DOB-MPC 控制框图

    Figure 1.  Block diagram of DOB-MPC control

    图 2  有效集法流程

    Figure 2.  Flowchart of active set method

    图 3  权函数倒数幅频曲线

    Figure 3.  Magnitude frequency curves of the inverse weighting function

    图 4  $ S(s) $和$ T(s) $幅频曲线

    Figure 4.  Magnitude frequency curves of $ S(s) $ and $ T(s) $

    图 5  $ Q(s) $幅频特性对比

    Figure 5.  Comparison of magnitude frequency characteristics of$ Q(s) $

    图 6  正弦干扰下MPC和DOB-MPC的线位移

    Figure 6.  Linear displacement of MPC and DOB-MPC with sinusoidal disturbance

    图 7  正弦干扰下MPC和DOB-MPC的角位移

    Figure 7.  Angular displacement of MPC and DOB-MPC with sinusoidal disturbance

    图 8  正弦干扰下MPC和DOB-MPC的控制力

    Figure 8.  Control force of MPC and DOB-MPC with sinusoidal disturbance

    图 9  正弦干扰下MPC和DOB-MPC的控制力矩

    Figure 9.  Control torque of MPC and DOB-MPC with sinusoidal disturbance

    图 10  正弦干扰下线加速度扰动与DOB估计

    Figure 10.  Linear acceleration disturbance and DOB estimation with sinusoidal disturbance

    图 11  正弦干扰下角加速度扰动与DOB估计

    Figure 11.  Angular acceleration disturbance and DOB estimation with sinusoidal disturbance

    图 12  阶跃干扰下MPC和DOB-MPC的线位移

    Figure 12.  Linear displacement of MPC and DOB-MPC with step disturbance

    图 13  阶跃干扰下MPC和DOB-MPC的角位移

    Figure 13.  Angular displacement of MPC and DOB-MPC with step disturbance

    图 14  阶跃干扰下MPC和DOB-MPC的控制力

    Figure 14.  Control force of MPC and DOB-MPC with step disturbance

    图 15  阶跃干扰下MPC和DOB-MPC的控制力矩

    Figure 15.  Control torque of MPC and DOB-MPC with step disturbance

    图 16  阶跃干扰下线加速度扰动与DOB估计

    Figure 16.  Linear acceleration disturbance and DOB estimation with step disturbance

    图 17  阶跃干扰下角加速度扰动与DOB估计

    Figure 17.  Angular acceleration disturbance and DOB estimation with step disturbance

    图 18  不同$ Q(s) $幅频曲线

    Figure 18.  Magnitude frequency curves of different $ Q(s) $

    图 19  不同$ Q(s) $的DOB-MPC的线位移

    Figure 19.  Linear displacement of DOB-MPC with different $ Q(s) $

    图 20  不同$ Q(s) $的DOB-MPC角位移

    Figure 20.  Angular displacement of DOB-MPC with different $ Q(s) $

    图 21  不同$ Q(s) $的DOB线加速度扰动估计对比

    Figure 21.  Comparison of DOB linear acceleration disturbance estimation with different $ Q(s) $

    图 22  不同$ Q(s) $的DOB角加速度扰动估计对比

    Figure 22.  Comparison of DOB angular acceleration disturbance estimation with different $ Q(s) $

    表  1  MPC优化权重

    Table  1.   Optimization weights of MPC

    自由度 位移 速度 控制
    x 1 5 10
    y 1 5 10
    z 1 10 10
    ϕ 1 10 10
    θ 1 5 10
    ψ 1 10 10
    下载: 导出CSV
  • [1] SCHLEICHER A, ZIEGLER T, SCHUBERT R, et al. In-orbit performance of the LISA Pathfinder drag-free and attitude control system[J]. CEAS Space Journal, 2018, 10(4): 471-485. doi: 10.1007/s12567-018-0204-x
    [2] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10.

    LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program“Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10(in Chinese).
    [3] 罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版), 2021, 60(1): 1-19.

    LUO J, AI L H, AI Y L, et al. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1): 1-19(in Chinese).
    [4] 李洪银, 叶小容, 刘佳恒, 等. 天琴无拖曳控制研究的关键问题[J]. 中山大学学报(自然科学版), 2021, 60(增刊1): 213-224.

    LI H Y, YE X R, LIU J H, et al. Key issues in the research on drag-free control for TianQin[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(Sup 1): 213-224(in Chinese).
    [5] VIDANO S, NOVARA C, PAGONE M, et al. The LISA DFACS: model predictive control design for the test mass release phase[J]. Acta Astronautica, 2022, 193: 731-743. doi: 10.1016/j.actaastro.2021.12.056
    [6] SUN Z Q, XIA Y Q, DAI L, et al. Disturbance rejection MPC for tracking of wheeled mobile robot[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2576-2587. doi: 10.1109/TMECH.2017.2758603
    [7] ZHANG S X, DAI L, XIA Y Q. Adaptive MPC for constrained systems with parameter uncertainty and additive disturbance[J]. IET Control Theory & Applications, 2019, 13(15): 2500-2506.
    [8] MA D L, XIA Y Q, LI T Y, et al. Active disturbance rejection and predictive control strategy for a quadrotor helicopter[J]. IET Control Theory & Applications, 2016, 10(17): 2213-2222.
    [9] ZHOU P, CHAI T Y, ZHAO J H. DOB design for nonminimum-phase delay systems and its application in multivariable MPC control[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59(8): 525-529.
    [10] YANG J, ZHENG W X. Offset-free nonlinear MPC for mismatched disturbance attenuation with application to a static var compensator[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(1): 49-53.
    [11] PANNOCCHIA G, BEMPORAD A. Combined design of disturbance model and observer for offset-free model predictive control[J]. IEEE Transactions on Automatic Control, 2007, 52(6): 1048-1053. doi: 10.1109/TAC.2007.899096
    [12] MAEDER U, BORRELLI F, MORARI M. Linear offset-free model predictive control[J]. Automatica, 2009, 45(10): 2214-2222. doi: 10.1016/j.automatica.2009.06.005
    [13] MAEDER U, MORARI M. Offset-free reference tracking with model predictive control[J]. Automatica, 2010, 46(9): 1469-1476. doi: 10.1016/j.automatica.2010.05.023
    [14] MORARI M, MAEDER U. Nonlinear offset-free model predictive control[J]. Automatica, 2012, 48(9): 2059-2067. doi: 10.1016/j.automatica.2012.06.038
    [15] KWON S, KYUN W. A discrete-time design and analysis of perturbation observer for motion control applications[J]. IEEE Transactions on Control Systems Technology, 2003, 11(3): 399-407. doi: 10.1109/TCST.2003.810398
    [16] 王璐. 基于观测器的抗干扰控制策略研究及性能评估[D]. 上海: 上海交通大学, 2015.

    WANG L. Observer-based disturbance rejection control methodology and performance evaluation[D]. Shanghai: Shanghai Jiao Tong University, 2015(in Chinese).
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  52
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 录用日期:  2024-08-17
  • 网络出版日期:  2024-10-12
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答