留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进动态窗口法的离轴式全拖挂车辆主动避障

胡丹丹 赵金聚 牛国臣

胡丹丹,赵金聚,牛国臣. 基于改进动态窗口法的离轴式全拖挂车辆主动避障[J]. 北京航空航天大学学报,2026,52(2):415-425 doi: 10.13700/j.bh.1001-5965.2024.0404
引用本文: 胡丹丹,赵金聚,牛国臣. 基于改进动态窗口法的离轴式全拖挂车辆主动避障[J]. 北京航空航天大学学报,2026,52(2):415-425 doi: 10.13700/j.bh.1001-5965.2024.0404
HU D D,ZHAO J J,NIU G C. Active obstacle avoidance based on an improved dynamic window approach for off-axis full trailer vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):415-425 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0404
Citation: HU D D,ZHAO J J,NIU G C. Active obstacle avoidance based on an improved dynamic window approach for off-axis full trailer vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):415-425 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0404

基于改进动态窗口法的离轴式全拖挂车辆主动避障

doi: 10.13700/j.bh.1001-5965.2024.0404
基金项目: 

国家自然科学基金(U2333205); 中央高校基本科研业务费专项资金(3122023PY04)

详细信息
    通讯作者:

    E-mail:niu_guochen@139.com

  • 中图分类号: TP242.6

Active obstacle avoidance based on an improved dynamic window approach for off-axis full trailer vehicles

Funds: 

National Natural Science Foundation of China (U2333205); The Fundamental Research Funds for the Central Universities (3122023PY04)

More Information
  • 摘要:

    针对普通乘用车的局部规划算法无法充分考虑整个拖挂系统,从而导致全拖挂车辆存在高碰撞风险的问题,提出一种针对离轴式全拖挂系统的改进动态窗口法(DWA),以实现无人全拖挂系统在非结构化道路下的主动避障。对牵引车速度进行采样,构成速度矢量空间,并根据系统约束和采样值,借助系统运动学模型预测两车体的运动轨迹;引入与目标点位置相关的子评价函数,提出一种符合全拖挂系统的评价函数;根据评价函数选择最优速度,确保系统安全抵达目标点。实验表明:所提方法在避障任务中具有可靠的安全性,在实车实验中,牵引车到障碍物边界的最小距离为0.83 m,全拖挂车辆到障碍物边界的最小距离为0.89 m。

     

  • 图 1  离轴式全拖挂系统

    Figure 1.  Off-axle full trailer system

    图 2  离轴式全拖挂车辆转弯半径示意图

    Figure 2.  Schematic diagram of turning radius for an off-axis full trailer vehicle

    图 3  采样轨迹示意图

    Figure 3.  Schematic of sample trajectory

    图 4  方法整体框架

    Figure 4.  Framework of algorithm

    图 5  多圆形包络原理(N=3)

    Figure 5.  Schematic diagram of multi-circle envelope (N=3)

    图 6  “剪刀”现象轨迹

    Figure 6.  Trajectory of "trailer jackknifing"

    图 7  场景1中2种方法避障足迹对比

    Figure 7.  Comparison of obstacle avoidance footprints of two methods in scenario 1

    图 8  场景2中2种方法避障足迹对比

    Figure 8.  Comparison of obstacle avoidance footprints of two methods in scenario 2

    图 9  场景2下前轮转角的对比

    Figure 9.  Comparison of steering angle in scenario 2

    图 10  场景2下基于全拖挂系统的避障速度

    Figure 10.  Velocity of obstacle avoidance based on full trailer system in scenario 2

    图 11  场景2下基于全拖挂系统的避障角速度

    Figure 11.  Angular velocity of obstacle avoidance based on full trailer system in scenario 2

    图 12  场景2下车体到最近障碍物的距离

    Figure 12.  Distance from vehicle bodies to the nearest obstacle in scenario 2

    图 13  场景2下两车体相对角度的对比

    Figure 13.  Comparison of relative angles of two vehicle bodies in scenario 2

    图 14  动态障碍物下基于全拖挂系统的避障足迹

    Figure 14.  Obstacle avoidance footprint based on full trailer system in case of dynamic obstacles

    图 15  动态障碍物下基于全拖挂系统的行驶轨迹

    Figure 15.  Trajectory based on full trailer system in case of dynamic obstacles

    图 16  动态障碍物下基于全拖挂系统的牵引车前轮转角

    Figure 16.  Steering angle of tractor based on full trailer system in case of dynamic obstacles

    图 17  动态障碍物下车体到最近障碍物的距离

    Figure 17.  Distance from vehicle bodies to the nearest obstacle in case of dynamic obstacles

    图 18  实车平台和实际环境

    Figure 18.  Real vehicle platform and actual environment

    图 19  全拖挂系统避障过程

    Figure 19.  Obstacle avoidance process of full trailer system

    图 20  全拖挂系统避障轨迹

    Figure 20.  Obstacle avoidance trajectory of full trailer system

    图 21  牵引车前轮转角的变化

    Figure 21.  Changes of steering angle of tractor

    图 22  两车体到最近障碍物的距离

    Figure 22.  Distance from two vehicle bodies to the nearest obstacle

    图 23  单个障碍物下车辆运动轨迹

    Figure 23.  Vehicle motion trajectory under a single obstacle

    图 24  单个障碍物下两车体到最近障碍物的距离

    Figure 24.  Distance from two vehicle bodies to the nearest obstacle under a single obstacle

    表  1  全拖挂车辆参数

    Table  1.   Parameters of off-axle full trailer

    参数 数值
    牵引车轴距$ {L_1}/{\mathrm{m}} $ 2.49
    全拖挂车辆轴距$ {L_3}/{\mathrm{m}} $ 1.68
    牵引车后轴中点到连接点距离$ {M_1}/{\mathrm{m}} $ 0.60
    全拖挂车辆前轴中心点到连接点距离$ {L_2}/{\mathrm{m}} $ 1.14
    牵引车车宽$ d/{\mathrm{m}} $ 1.66
    牵引车车长$ l/{\mathrm{m}} $ 3.36
    全拖挂车辆车宽$ {d_{\mathrm{r}}}/{\mathrm{m}} $ 1.66
    全拖挂车辆车长$ {l_{\mathrm{r}}}/{\mathrm{m}} $ 2.50
    两车体最大相对角度$ {\theta _{{\mathrm{s}}\max }}/{\mathrm{rad}} $ 2.23
    下载: 导出CSV

    表  2  避障控制器参数

    Table  2.   Obstacle Avoidance Controller Parameters

    参数 数值
    障碍物半径$ R/{\mathrm{m}} $ 0.7/0.8
    预测时间$ T/{\mathrm{s}} $ 3.0
    牵引车最大速度$ {v_{\max }}/({\text{m}}\cdot{\text{s}}^{-1}) $ 3.0
    牵引车最大角速度$ {\omega _{\max }}/({\text{rad}}\cdot{\text{s}}^{-1}) $ 0.7
    预测时间间隔$ {{{T}}_{\text{d}}}/{\text{s}} $ 0.1
    速度采样分辨率$ {v}_{\text{d}}/(\text{m}\cdot\text{s}^{-1}) $ 0.01
    角速度采样分辨率$ {\omega _{\text{d}}}/({\text{rad}}\cdot{\text{s}}^{-1}) $ 0.017
    a1b1c1d1 0.15、1.0、1.5、1
    a2b2c2d2 0.15、1.0、1.5、1
    $ \eta 、\lambda $ 0.3、0.7
    下载: 导出CSV
  • [1] JIN C, YONG Z, HOU S M, et al. Stabilization control of a backward tractor-trailer mobile robot[C]//Proceedings of the 8th World Congress on Intelligent Control and Automation. Piscataway: IEEE Press, 2010: 2136-2141.
    [2] RITZEN P, ROEBROEK E, VAN DE WOUW N, et al. Trailer steering control of a tractor-trailer robot[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1240-1252. doi: 10.1109/TCST.2015.2499699
    [3] BERGMAN K, LJUNGQVIST O, AXEHILL D. Improved path planning by tightly combining lattice-based path planning and optimal control[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(1): 57-66. doi: 10.1109/TIV.2020.2991951
    [4] 任玥, 郑玲, 张巍, 等. 基于模型预测控制的智能车辆主动避撞控制研究[J]. 汽车工程, 2019, 41(4): 404-410. doi: 10.19562/j.chinasae.qcgc.2019.04.007

    REN Y, ZHENG L, ZHANG W, et al. A study on active collision avoidance control of autonomous vehicles based on model predictive control[J]. Automotive Engineering, 2019, 41(4): 404-410(in Chinese). doi: 10.19562/j.chinasae.qcgc.2019.04.007
    [5] 牛国臣, 李文帅, 魏洪旭. 基于双五次多项式的智能汽车换道轨迹规划[J]. 汽车工程, 2021, 43(7): 978-986. doi: 10.19562/j.chinasae.qcgc.2021.07.004

    NIU G C, LI W S, WEI H X. Intelligent vehicle lane changing trajectory planning based on double quintic polynomials[J]. Automotive Engineering, 2021, 43(7): 978-986(in Chinese). doi: 10.19562/j.chinasae.qcgc.2021.07.004
    [6] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 1985: 500-505.
    [7] LIM W, LEE S, SUNWOO M, et al. Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 613-626. doi: 10.1109/TITS.2017.2756099
    [8] YI B L, BENDER P, BONARENS F, et al. Model predictive trajectory planning for automated driving[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(1): 24-38. doi: 10.1109/TIV.2018.2886683
    [9] ZENG J, ZHANG B K, SREENATH K. Safety-critical model predictive control with discrete-time control barrier function[C]//Proceedings of the American Control Conference. Piscataway: IEEE Press, 2021: 3882-3889.
    [10] FOX D, BURGARD W, THRUN S. The dynamic window approach to collision avoidance[J]. IEEE Robotics & Automation Magazine, 1997, 4(1): 23-33.
    [11] BAI G X, LIANG C, MENG Y, et al. Obstacle avoidance of semi-trailers based on nonlinear model predictive control[J]. World Electric Vehicle Journal, 2019, 10(4): 72. doi: 10.3390/wevj10040072
    [12] BERLIN J, HESS G, KARLSSON A, et al. Trajectory generation for mobile robots in a dynamic environment using nonlinear model predictive control[C]//Proceedings of the IEEE 17th International Conference on Automation Science and Engineering. Piscataway: IEEE Press, 2021: 942-947.
    [13] ASROFUDIN B, WIDYOTRIATMO A, SIREGAR P I, et al. Sigmoid function optimization for path following control with obstacle avoidance of an autonomous truck-trailer[C]//Proceedings of the International Conference on Instrumentation, Control, and Automation. Piscataway: IEEE Press, 2021: 180-185.
    [14] LJUNGQVIST O, EVESTEDT N, CIRILLO M, et al. Lattice-based motion planning for a general 2-trailer system[C]//Proceedings of the IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2017: 819-824.
    [15] CHENG J, ZHANG Y, WANG Z H. Motion planning algorithm for tractor-trailer mobile robot in unknown environment[C]//Proceedings of the 8th International Conference on Natural Computation. Piscataway: IEEE Press, 2012: 1050-1055.
    [16] LAVALLE S M. Rapidly-exploring random trees: progress and prospects[C]//Proceedings of the 4th International workshop on the Algorithmic Foundations of Robotics. Wellesley: [s.n.], 2001: 293-308.
    [17] 白国星, 刘立, 孟宇, 等. 基于非线性模型预测控制的农用拖挂车避障控制器研究[J]. 农业机械学报, 2019, 50(4): 356-362.

    BAI G X, LIU L, MENG Y, et al. Study of obstacle avoidance controller of agricultural tractor-trailers based on predictive control of nonlinear model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 356-362(in Chinese).
    [18] SUN F C, HUANG Y L, YUAN J, et al. A compound PRM method for path planning of the tractor-trailer mobile robot[C]//Proceedings of the IEEE International Conference on Automation and Logistics. Piscataway: IEEE Press, 2007: 1880-1885.
    [19] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580. doi: 10.1109/70.508439
    [20] LJUNGQVIST O, EVESTEDT N, AXEHILL D, et al. A path planning and path-following control framework for a general 2-trailer with a car-like tractor[J]. Journal of Field Robotics, 2019, 36(8): 1345-1377. doi: 10.1002/rob.21908
    [21] 杨凯, 黄亚楼, 徐国华. 带拖车的轮式移动机器人系统的建模与仿真[J]. 系统仿真学报, 2000, 12(1): 43-46. doi: 10.16182/j.cnki.joss.2000.01.012

    YANG K, HUANG Y L, XU G H. Modeling and simulation of tractor trailor robot systems’ kinematics[J]. Acta Simulata Systematica Sinica, 2000, 12(1): 43-46(in Chinese). doi: 10.16182/j.cnki.joss.2000.01.012
    [22] 苑晶, 黄亚楼, 孙凤池. 两种连接形式的拖挂式移动机器人路径跟踪控制[J]. 控制理论与应用, 2008, 25(3): 398-406.

    YUAN J, HUANG Y L, SUN F C. Path following control for tractor-trailer mobile robots with two kinds of connection forms[J]. Control Theory & Applications, 2008, 25(3): 398-406(in Chinese).
    [23] CHEN L K, SHIEH Y A. Jackknife prevention for articulated vehicles using model reference adaptive control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2011, 225(1): 28-42. doi: 10.1243/09544070JAUTO1513
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  33
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 录用日期:  2024-07-12
  • 网络出版日期:  2024-09-09
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答