留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Hp自适应伪谱法的飞机速度矢量控制优化

孔令玮 李卫琪

孔令玮,李卫琪. 基于Hp自适应伪谱法的飞机速度矢量控制优化[J]. 北京航空航天大学学报,2026,52(2):599-609 doi: 10.13700/j.bh.1001-5965.2024.0405
引用本文: 孔令玮,李卫琪. 基于Hp自适应伪谱法的飞机速度矢量控制优化[J]. 北京航空航天大学学报,2026,52(2):599-609 doi: 10.13700/j.bh.1001-5965.2024.0405
KONG L W,LI W Q. Optimization of aircraft speed vector control based on Hp adaptive pseudo-spectral method[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):599-609 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0405
Citation: KONG L W,LI W Q. Optimization of aircraft speed vector control based on Hp adaptive pseudo-spectral method[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):599-609 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0405

基于Hp自适应伪谱法的飞机速度矢量控制优化

doi: 10.13700/j.bh.1001-5965.2024.0405
详细信息
    通讯作者:

    E-mail:liwq@buaa.edu.cn

  • 中图分类号: TP273+.2;V249.1

Optimization of aircraft speed vector control based on Hp adaptive pseudo-spectral method

More Information
  • 摘要:

    采用Hp自适应伪谱法对速度矢量控制问题进行优化求解。建立基于航迹坐标系的非线性飞机动力学模型,建模时将飞机的过载、推力及滚转的动态响应以动态环节形式进行描述,并通过路径约束实现了实际飞行控制律中的迎角限制功能。通过对控制量、状态量及目标函数的设定实现不同的战术需求,进而利用伪谱法进行优化求解。仿真结果验证了基于Hp自适应伪谱法的速度矢量控制优化的有效性,并展示了在特定场景中处理各种约束的可行性。

     

  • 图 1  自适应调参流程[15]

    Figure 1.  Adaptive parameter adjustment process[15]

    图 2  无约束最快转向飞机状态曲线

    Figure 2.  Unconstrained fastest turning aircraft state curve

    图 3  飞机状态曲线

    Figure 3.  Aircraft state curve

    图 4  30°目标航迹倾角最快转向飞机状态曲线

    Figure 4.  Fastest turning aircraft status curve at 30° target track inclination angle

    图 5  飞行轨迹

    Figure 5.  Flight path

    图 6  路径最短速度矢量控制法飞机状态曲线

    Figure 6.  Aircraft state curve with shortest path speed vector control method

    图 7  高度约束最快转向飞机状态曲线

    Figure 7.  Altitude-constrained fastest turning aircraft state curve

    图 8  目标状态约束飞机状态曲线

    Figure 8.  Aircraft state curve constrained by target state

    图 9  推力约束飞机状态曲线

    Figure 9.  Thrust constrained aircraft state curve

    图 10  燃油约束飞机状态曲线

    Figure 10.  Fuel constrained aircraft state curve

  • [1] GHASEMI R, NIKRAVESH S, MENHAJ M, et al. A near optimal fuzzy modeling of pursuit-evasion in an air combat[J]. WSEAS Transactions on Mathematics, 2004, 3(3): 514-521.
    [2] 张翔伦, 杨蔷薇. 基于机动动作库的实时轨迹生成与仿真研究[J]. 飞行力学, 2008, 26(3): 29-32.

    ZHANG X L, YANG Q W. Research on real-time trajectory generation based on tactical maneuvers data base[J]. Journal of Flight Dynamics, 2008, 26(3): 29-32(in Chinese).
    [3] 禹春梅. 飞行器在线轨迹规划与制导控制方法研究[D]. 长沙: 国防科技大学, 2018.

    YU C M. Research on online trajectory planning and guidance control for aircraft[D]. Changsha: National University of Defense Technology, 2018(in Chinese).
    [4] 郭铁丁. 深空探测小推力轨迹优化的间接法与伪谱法研究[D]. 北京: 清华大学, 2012.

    GUO T D. Study of indirect and pseudospectral methods for low thrust trajectory optimization in deep space exploration[D]. Beijing: Tsinghua University, 2012(in Chinese).
    [5] 崔凯凯, 韩维, 刘玉杰, 等. 基于DM-DSC的舰载机着舰自动复飞控制算法[J]. 北京航空航天大学学报, 2023, 49(4): 900-912.

    CUI K K, HAN W, LIU Y J, et al. Automatic wave-off control algorithm for carrier aircraft based on DM-DSC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(4): 900-912(in Chinese).
    [6] 郑金库, 唐胜景, 郭杰. 高超声速滑翔飞行器预测校正闭环协同末制导方法[J]. 北京航空航天大学学报, 2023, 49(11): 3188-3196.

    ZHENG J K, TANG S J, GUO J. Closed-loop cooperative terminal guidance law based on predictor-corrector for hypersonic gliding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(11): 3188-3196(in Chinese).
    [7] 雍恩米. 高超声速滑翔式再入飞行器轨迹优化与制导方法研究[D]. 长沙: 国防科学技术大学, 2008.

    YONG E M. Study on trjector optimization and guidance approach for hypersonic glide-reentry vehicle[D]. Changsha: National University of Defense Technology, 2008(in Chinese).
    [8] TIAN B L, ZONG Q. 3DOF ascent phase trajectory optimization for aircraft based on adaptive Gauss pseudospectral method[C]// Proceedings of the 2012 Third International Conference on Intelligent Control and Information Processing. Piscataway: IEEE Press, 2012: 431-435.
    [9] 张宇翔. 固定翼无人机任务航迹规划及优化方法研究[D]. 杭州: 浙江大学, 2016.

    ZHANG Y X. Research on mission flight path planning and optimization method for Fixed-wing UAV[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [10] HUANG J, LIU Z G, LIU Z Q, et al. A pk-adaptive mesh refinement for pseudospectral method to solve optimal control problem[J]. IEEE Access, 2019, 7: 161666-161679. doi: 10.1109/ACCESS.2019.2952139
    [11] LIU G Q, LI B, JI Y D. A modified HP-adaptive pseudospectral method for multi-UAV formation reconfiguration[J]. ISA transactions, 2022, 129: 217-229. doi: 10.1016/j.isatra.2022.01.015
    [12] CHAI R Q, SAVVARIS A, TSOURDOS A, et al. Trajectory optimization of space maneuver vehicle using a hybrid optimal control solver[J]. IEEE Transactions on Cybernetics, 2019, 49(2): 467-480. doi: 10.1109/TCYB.2017.2778195
    [13] CHAI R Q, TSOURDOS A, SAVVARIS A, et al. Real-time reentry trajectory planning of hypersonic vehicles: a two-step strategy incorporating fuzzy multiobjective transcription and deep neural network[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6904-6915. doi: 10.1109/TIE.2019.2939934
    [14] 李博雅, 李臻, 顾一凡, 等. 基于hp-自适应伪谱法的飞行器轨迹优化[C]//第十七届上海航天科技论坛暨上海市宇航学会2022学术年会论文集. 上海, 2023: 159-168.

    LI B Y, LI Z, GU Y F, et al. Aircraft trajectory optimization based on hp-adaptive pseudospectral method[C]//Proceedings of the 17th Shanghai Aerospace Science and Technology Forum and 2022 Annual Conference of the Shanghai Astronautics Society. Shanghai: SSA, 2023:159-168.
    [15] 黄斌. 基于hp自适应伪谱法的六自由度运动轨迹优化研究[D]. 南京: 南京航空航天大学, 2021: 16.

    HUANG B. Research on optimization of six-dof motion trajectory based on hp adaptive pseudospectral method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 16(in Chinese).
    [16] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 22-30.

    FANG Z P, CHEN W C, ZHANG S G. Flight dynamics of aircraft[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2005: 22-30(in Chinese).
    [17] HOWE D, RORIE G. Aircraft conceptual design synthesis[M]. London: Professional Engineering Publishing, 2000.
    [18] VELÁSQUEZ-SANMARTÍN F, INSAUSTI X, ZÁRRAGA-RODRÍGUEZ M, et al. A mathematical model for the analysis of jet engine fuel consumption during aircraft climb and descent[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(5): 3605-3614. doi: 10.1109/TITS.2023.3333276
    [19] HARGRAVES C R, PARIS S W. Direct trajectory optimization using nonlinear programming and collocation[J]. Journal of Guidance Control, and Dynamics, 1987, 10(4): 338-342. doi: 10.2514/3.20223
    [20] BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207. doi: 10.2514/2.4231
    [21] HUNTINGTON G T. Advancement and analysis of a Gauss pseudospectral transcription for optimal control problems[D]. Cambridge: Massachusetts Institute of Technology, 2007.
    [22] BENSON D A, HUNTINGTON G T, RAO V. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1435-1440. doi: 10.2514/1.20478
    [23] GILL P E, MURRAY W, SAUNDERS M A. SNOPT: an SQP algorithm for large-scale constrained optimization[J]. SIAM Journal on Optimization, 2002, 12(4): 979-1006. doi: 10.1137/S1052623499350013
    [24] DARBY C L, HAGER W W, RAO A V. An hp-adaptive pseudospectral method for solving optimal control problems[J]. Optimal Control Applications and Methods, 2011, 32(4): 476-502. doi: 10.1002/oca.957
    [25] PATTERSON M A, HAGER W W, RAO A V. A ph mesh refinement method for optimal control[J]. Optimal Control Applications and Methods, 2015, 36(4): 398-421. doi: 10.1002/oca.2114
    [26] LIU F J, HAGER W W, RAO A V. Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction[J]. Journal of the Franklin Institute, 2015, 352(10): 4081-4106. doi: 10.1016/j.jfranklin.2015.05.028
    [27] RAO A V, BENSON D A, DARBY C, et al. Algorithm 902[J]. ACM Transactions on Mathematical Software, 2010, 37(2): 1-39.
  • 加载中
图(10)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  60
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 录用日期:  2024-07-25
  • 网络出版日期:  2024-09-09
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答