留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻量化低慢小无人机多目标检测及跟踪方法

樊小冬 谭天一 吴江

樊小冬,谭天一,吴江. 轻量化低慢小无人机多目标检测及跟踪方法[J]. 北京航空航天大学学报,2026,52(2):610-619 doi: 10.13700/j.bh.1001-5965.2024.0406
引用本文: 樊小冬,谭天一,吴江. 轻量化低慢小无人机多目标检测及跟踪方法[J]. 北京航空航天大学学报,2026,52(2):610-619 doi: 10.13700/j.bh.1001-5965.2024.0406
FAN X D,TAN T Y,WU J. Lightweight multi-target detection and tracking method for small unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):610-619 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0406
Citation: FAN X D,TAN T Y,WU J. Lightweight multi-target detection and tracking method for small unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):610-619 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0406

轻量化低慢小无人机多目标检测及跟踪方法

doi: 10.13700/j.bh.1001-5965.2024.0406
详细信息
    通讯作者:

    E-mail:wujiang@buaa.edu.cn

  • 中图分类号: V279+.2;TP391

Lightweight multi-target detection and tracking method for small unmanned aerial vehicles

More Information
  • 摘要:

    为有效地探测城镇、厂区等复杂环境中的低慢小无人机(UAV)目标,提出一种轻量化多无人机目标视觉检测及跟踪方法。该方法以CenterNet目标检测算法为基础,通过引入多层次特征融合和快速空间金字塔池化(SPPF)结构,并采用MobileNet轻量化主干网络,实现对小型无人机目标的准确检测。为解决长焦相机跟踪无人机目标过程中的不稳定问题,提出一种基于优化DeepSORT的无人机多目标跟踪方法。采用自适应噪声卡Kalman波器进行目标轨迹预测,同时引入相机运动补偿模块和BYTE目标关联算法,以实现对多个无人机目标的准确跟踪。构建小型无人机目标检测及跟踪数据集,对算法进行训练和测试,并在嵌入式设备Jetson NX上进行部署验证。实验结果显示,所提算法平均模型参数量减少了56.9%,mAP提高了1.18%,平均计算量减少了66.5%。在Jetson NX上,单帧图像平均处理时间为36.4 ms,平均模型大小为14.5 MB。该算法具有较好的检测准确性和运行实时性,适用于算力较小的边缘设备部署。

     

  • 图 1  基于改进CenterNet的目标检测算法结构

    Figure 1.  Structure of object detection algorithm based on the improved CenterNet architecture

    图 2  SPPF结构和SPP结构的对比

    Figure 2.  Comparison between SPPF structure and SPP structure

    图 3  深度可分离卷积示意图

    Figure 3.  Schematic diagram of depth-wise separable convolution

    图 4  SE通道注意力模块

    Figure 4.  SE channel attention module

    图 5  算法性能评估曲线

    Figure 5.  Algorithm performance evaluation curve

    图 6  算法改进前后检测示例

    Figure 6.  Detection example before and after algorithm improvement

    图 7  本文算法和ByteTrack算法测试部分截图

    Figure 7.  Screenshots of proposed algorithm and ByteTrack algorithm test

    表  1  关键硬件参数

    Table  1.   Key hardware parameters

    硬件 配置
    GPU NVIDIA RTX 3090(单卡)
    CPU 13th Gen Intel(R) Core(TM) i5-13400
    硬盘 SAMSUNG 980 SSD 1TB
    内存 8 GB*2
    下载: 导出CSV

    表  2  DroneBirds数据集测试结果

    Table  2.   DroneBirds dataset test results

    模型 主干网络 mAP50 模型参数/百万 计算量/(109 s−1)
    CenterNet[25] ResNet-18 92.8 20.2 41.44
    ResNet-50 93.7 45.12 66.38
    MobileNetV2 92.3 17.54 40.06
    MobileNetV3 91.6 15.67 36.87
    CenterNetImp
    (基于CenterNet改进)
    ResNet-18 94.4 12.21 17.02
    ResNet-50 94.8 27.08 30.40
    MobileNetV2 93.5 4.11 9.28
    MobileNetV3 92.4 4.41 8.67
    下载: 导出CSV

    表  3  本文算法与主流多目标跟踪算法对比

    Table  3.   Comparison of proposed algorithm with mainstream multi-target tracking algorithms

    算法 IDF1↑ MOTA↑ MOTP↓ IDs↓ FP↓ FN↓ FPS↑
    DeepSORT[26] 56.03 78.59 0.1644 157 936 556 59.28
    ByteTrack 55.24 91.90 0.1643 117 81 780 79.88
    BoT-SORT[28] 86.22 96.29 0.1608 104 168 491 79.90
    本文算法(光流) 94.00 97.28 0.1568 9 176 260 54.92
    注:加粗数字表示最优值。
    下载: 导出CSV

    表  4  不同运动补偿算法效果对比

    Table  4.   Comparison of the effects of different motion compensation algorithms

    相机运动补偿方法 IDF1↑ MOTA↑ MOTP↓ IDs↓ FP↓ FN↓ FPS↑
    光流法 94.00 97.28 0.1567 9 176 260 54.92
    ORB特征点配准 93.00 96.79 0.1622 62 189 375 70.73
    SIFT特征点配准 89.54 96.86 0.1616 37 197 332 23.38
    无相机运动补偿 83.07 96.29 0.1721 29 203 320 79.93
    下载: 导出CSV

    表  5  表观特征模型消融实验

    Table  5.   Ablation experiment of appearance feature model

    表观特征模型 IDF1↑ MOTA↑ MOTP↓ IDs↓ FP↓ FN↓ FPS↑
    94.00 97.28 0.1567 9 176 260 54.92
    92.40 96.32 0.1534 17 196 242 47.34
    下载: 导出CSV

    表  6  本文算法在Jetson NX上部署后的运行时间

    Table  6.   The running time of the algorithm after deployment on Jetson NX

    模型 主干网络/加速精度 检测时间/ms 跟踪时间/ms 总时间/ms 帧率
    CenterNet[25]ResNet-18/FP1642.37912.34754.72618.27
    ResNet-18/FP3262.42912.88675.31513.27
    MobileNetV2/FP1640.40111.85352.25419.13
    MobileNetV2/FP3265.65612.38278.03812.81
    MobileNetV3/FP1641.82911.94653.77518.59
    MobileNetV3/FP3259.02512.20371.22814.03
    CenterNetImpResNet-18/FP1624.85611.63236.48827.40
    ResNet-18/FP3234.72711.37146.09821.69
    MobileNetV2/FP1625.93411.49837.43226.71
    MobileNetV2/FP3228.80411.34740.15124.90
    MobileNetV3/FP1623.85511.43635.29128.33
    MobileNetV3/FP3228.9311.26740.19724.87
    下载: 导出CSV

    表  7  本文算法模型大小与改进前对比

    Table  7.   Comparison of the algorithm in this paper with that before improvement

    模型 主干网络 ONNX模型/MB FP32优化模型/MB FP16优化模型/MB
    CenterNet[25] ResNet-18 78 106 39
    MobileNetV2 67 68 34
    MobileNetV3 60 62 32
    CenterNetImp ResNet-18 47 77 24
    MobileNetV2 16 18 8.6
    MobileNetV3 17 21 11
    下载: 导出CSV
  • [1] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2980-2988.
    [2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [3] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525.
    [4] REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. (2018-04-08) [2024-06-01]. https://doi.org/10.48550/arXiv.1804.02767.
    [5] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2024-6-5]. https://doi.org/10.48550/arXiv.2004.10934.
    [6] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2023: 7464-7475.
    [7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [8] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2024-06-05]. https://arxiv.org/abs/1704.04861.
    [9] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4510-4520.
    [10] HOWARD A, SANDLER M, CHEN B, et al. Searching for mobileNetV3[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 1314-1324.
    [11] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6848-6856.
    [12] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// European Conference on Computer Vision. Berlin: Springer, 2018: 122-138.
    [13] WU B C, KEUTZER K, DAI X L, et al. FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 10726-10734.
    [14] DAI X, WAN A, ZHANG P, et al. FBNetV3: joint architecture-recipe search using neural acquisition function[EB/OL]. (2021-03-30)[2024-06-05]. https://doi.org/10.48550/arXiv.2006.02049.
    [15] JIANG N, WANG K R, PENG X K, et al. Anti-UAV: a large-scale benchmark for vision-based UAV tracking[J]. IEEE Transactions on Multimedia, 2021, 25: 486-500.
    [16] COLUCCIA A, FASCISTA A, SCHUMANN A, et al. Drone-Vs-Bird detection challenge at IEEE AVSS2021[C]// Proceedings of the 2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE Press, 2021: 1-8.
    [17] ZHAO J, ZHANG J S, LI D D, et al. Vision-based anti-UAV detection and tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25323-25334. doi: 10.1109/TITS.2022.3177627
    [18] YU Q J, MA Y C, HE J F, et al. A unified Transformer-based tracker for anti-UAV tracking[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2023: 3036-3046.
    [19] 谢学立, 席建祥, 卢瑞涛, 等. 动态区域聚焦的反无人机红外长时跟踪算法[J]. 北京航空航天大学学报, 2025, 51(9): 3039-3051.

    XIE X L, XI J X, LU R T, et al. Long-term infrared object tracking algorithm based on dynamic region focusing for anti-UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(9): 3039-3051(in Chinese).
    [20] 陈家俊, 李响, 宋延嵩, 等. 双置信度下多特征自适应融合的红外弱小目标实时跟踪 [J]. 北京航空航天大学学报, 2024, 50 (2): 433-442.

    Chen J J, Li X, Song Y S, et al. Real - time Tracking of Infrared Dim and Small Targets Based on Adaptive Fusion of Multi-features Under Dual Confidence Levels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(2): 433-442(in Chinese).
    [21] 刘芳, 杨雨妍, 王鑫. 基于特征融合和分块注意力的无人机跟踪算法[J]. 北京航空航天大学学报, 2025, 51(5): 1566-1578.

    LIU F, YANG Y Y, WANG X. UAV tracking algorithm based on feature fusion and block attention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(5): 1566-1578 (in Chinese).
    [22] MEINHARDT T, KIRILLOV A, LEAL-TAIXÉ L, et al. TrackFormer: multi-object tracking with transformers[C]// Proceedings of 2022 the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2023.
    [23] LI S Y, FISCHER T, KE L, et al. Ovtrack: open-vocabulary multiple object tracking[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2023: 5567-5577.
    [24] QIN Z, ZHOU S P, WANG L, et al. Motiontrack: learning robust short-term and long-term motions for multi-object tracking[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2023: 17939-17948.
    [25] DUAN K W, BAI S, XIE L X, et al. Centernet: keypoint triplets for object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 6568-6577.
    [26] PUJARA A, BHAMARE M. DeepSORT: real time & multi-object detection and tracking with YOLO and TensorFlow[C]// Proceedings of the 2022 International Conference on Augmented Intelligence and Sustainable Systems. Piscataway: IEEE Press, 2022: 456-460.
    [27] DU Y H, WAN J F, ZHAO Y Y, et al. GIAOTracker: a comprehensive framework for MCMOT with global information and optimizing strategies in VisDrone 2021[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE Press, 2021: 2809-2819.
    [28] AHARON N, ORFAIG R, BOBROVSKY B Z. BoT-SORT: robust associations multi-pedestrian tracking[EB/OL]. (2022-07-07)[2024-06-03]. https://doi.org/10.48550/arXiv.2206.14651.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  9
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 录用日期:  2024-07-05
  • 网络出版日期:  2026-01-07
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答