留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X射线安检图像高精度实时目标检测模型与基准数据集

支洪平 孙立峰 王旭

支洪平,孙立峰,王旭. X射线安检图像高精度实时目标检测模型与基准数据集[J]. 北京航空航天大学学报,2026,52(2):533-540 doi: 10.13700/j.bh.1001-5965.2024.0459
引用本文: 支洪平,孙立峰,王旭. X射线安检图像高精度实时目标检测模型与基准数据集[J]. 北京航空航天大学学报,2026,52(2):533-540 doi: 10.13700/j.bh.1001-5965.2024.0459
ZHI H P,SUN L F,WANG X. High-precision real-time object detection model and benchmark for X-ray security inspection images[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):533-540 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0459
Citation: ZHI H P,SUN L F,WANG X. High-precision real-time object detection model and benchmark for X-ray security inspection images[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(2):533-540 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0459

X射线安检图像高精度实时目标检测模型与基准数据集

doi: 10.13700/j.bh.1001-5965.2024.0459
详细信息
    通讯作者:

    E-mail:sunlf@tsinghua.edu.cn

  • 中图分类号: TP391.41;TP73

High-precision real-time object detection model and benchmark for X-ray security inspection images

More Information
  • 摘要:

    图像目标检测技术辅助提高了安检工作效率,进一步保障了公共安全。然而,不同型号安检机成像的差异性、X射线安检图像的复杂性及昂贵的数据标注成本制约了X射线安检图像目标检测技术的深入研究。为此,针对不同安检机厂商相同物质X射线成像颜色的差异,基于风格迁移算法进行数据集扩充,提高目标检测算法的泛化性;针对X射线安检图像中同类待识别物品尺寸的明显差异,提出一种细化的特征金字塔网络结构提取更加丰富的不同层次语义信息;为进一步提高检测精度,提出一个易于集成的细粒度分类模块,该模块能很好地适配主流目标检测模型。同时,构造一个大规模的基准数据集,包含56659张X射线安检图像,37种违禁品,每张图像均进行高质量标注。该公开X射线安检图像数据集包含的违禁品种类和图像数量较多。基于该X射线违禁品数据集进行对比实验,结果显示,所提模型结构较基线模型YOLOX-L的均值平均精度(mAP)提高约0.056。

     

  • 图 1  部分违禁品示例X射线安检图像

    Figure 1.  Example X-ray security inspection images of some prohibited items

    图 2  条件生成对抗模型结构

    Figure 2.  Structure of conditional generative adversarial model

    图 3  部分域之间风格迁移效果

    Figure 3.  Style transfer effect between some domains

    图 4  检测流程及检测模型结构

    Figure 4.  Detection process and structure of detection model

    图 5  细化的特征金字塔网络结构

    Figure 5.  Refined feature pyramid network structure

    图 6  细粒度分类模块结构

    Figure 6.  Fine-grained classification module structure

    表  1  数据集样本信息

    Table  1.   Sample information of the dataset

    大类标签 细类标签 样本数
    刀具 刀片 2935
    美工刀 2448
    特殊刀片 844
    全金属折叠刀 2539
    非全金属折叠刀 383
    全金属柄刀 1561
    非全金属柄刀 785
    线形刀 52
    厨刀 462
    刮胡刀 309
    玻璃容器 玻璃瓶 58307
    酒瓶 1417
    有机物容器 饮料瓶 19057
    易拉罐 1086
    电脑 3816
    充电宝 5344
    小电子设备 16328
    104
    压力罐 3418
    工具 钳子 6568
    扳手 3416
    锤子 578
    抹泥板 1607
    斧头 36
    锯条 71
    螺丝刀 6796
    铅坠 281
    凿子 192
    指虎 85
    手铐 56
    甩棍 38
    雨伞 8010
    剪刀 4683
    打火机 8403
    金属杯 7553
    打火机油罐 63
    弹弓 26
    下载: 导出CSV

    表  2  各数据集对比

    Table  2.   Comparison of various datasets

    数据集 类别数 图像数量
    GDXray[16] 3 8150
    OPIXray[17] 5 8885
    PIDXray[14] 12 47677
    本文 37 56659
    下载: 导出CSV

    表  3  各检测模型实验结果

    Table  3.   Experimental results of each detection model

    大类标签 样本数 平均精度
    Cascade R-CNN[4] YOLOX-L[18] YOLOX-L-FG
    刀具 2453 0.326 0.696 0.744
    工具 3776 0.478 0.730 0.773
    玻璃容器 11867 0.747 0.887 0.870
    有机物容器 3975 0.633 0.828 0.826
    电脑 784 0.937 0.971 0.898
    充电宝 1139 0.731 0.863 0.850
    小电子设备 3378 0.790 0.904 0.867
    23 0.351 0.333 0.517
    压力罐 669 0.410 0.574 0.731
    指虎 19 0.506 0.657 0.789
    手铐 9 0.722 0.749 0.495
    雨伞 1664 0.922 0.968 0.897
    剪刀 891 0.488 0.619 0.731
    打火机 1657 0.583 0.741 0.773
    金属杯 1507 0.947 0.974 0.899
    打火机油罐 4 0.250 0.250 0.545
    弹弓 8 0.042 0.198 0.432
    甩棍 7 0.071 0.429 0.732
     注:mAP为表中所有18个类别平均精度的算术平均值;Cascade R-CNN、YOLOX-L、YOLOX-L-FG的mAP分别为0.552、0.687、0.743。
    下载: 导出CSV

    表  4  FG模块集成前后均值平均精度对比

    Table  4.   Comparison of mean average precision before and after FG module integration

    基线模型是否集成FGmAP增益
    Cascade R-CNN[4]0.5520.047
    0.599
    YOLOX-S[18]0.5770.082
    0.659
    YOLOX-M[18]0.6470.043
    0.690
    YOLOX-L[18]0.6870.056
    0.743
    下载: 导出CSV

    表  5  各模型推理延迟

    Table  5.   Inference delay of each model

    检测模型 推理芯片 图像尺寸/(像素×像素) 数据类型 延迟/ms mAP
    Cascade R-CNN[4] NVIDIA GeForce GTX 1660 1024×1280 32位浮点数 162 0.552
    Cascade R-CNN-FG 210 0.599
    YOLOX-L[18] 116 0.687
    YOLOX-L-FG 123 0.743
    下载: 导出CSV
  • [1] GAUS Y F A, BHOWMIK N, AKCAY S, et al. Evaluating the transferability and adversarial discrimination of convolutional neural networks for threat object detection and classification within X-ray security imagery[C]//Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE Press, 2019: 420-425.
    [2] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482. doi: 10.11897/SP.J.1016.2019.00453

    ZHANG S, GONG Y H, WANG J J. The development of deep convolution neural network and its applications on computer vision[J]. Chinese Journal of Computers, 2019, 42(3): 453-482(in Chinese). doi: 10.11897/SP.J.1016.2019.00453
    [3] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the Computer Vision-ECCV 2016. Berlin: Springer, 2016: 21-37.
    [4] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6154-6162.
    [5] 王坤, 冯康威. 基于改进YOLOv5的交通场景小目标检测算法[J/OL]. 北京航空航天大学学报, 2024(2024-03-12)[2024-06-19]. https://link.cnki.net/doi/10.13700/j.bh.1001-5965.2024.0003.

    WANG K, FENG K W. Small target detection algorithm for traffic scene based on improved YOLOv5[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 2024 (2024-03-12)[2024-06-19]. https://link.cnki.net/doi/10.13700/j.bh.1001-5965.2024.0003(in Chinese).
    [6] JIAO L C, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J]. IEEE Access, 2019, 7: 128837-128868. doi: 10.1109/ACCESS.2019.2939201
    [7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
    [8] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [9] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2016: 1440-1448.
    [10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [11] ARKIN E, YADIKAR N, XU X B, et al. A survey: object detection methods from CNN to Transformer[J]. Multimedia Tools and Applications, 2023, 82(14): 21353-21383. doi: 10.1007/s11042-022-13801-3
    [12] VASANTHI P, MOHAN L. Multi-Head-Self-Attention based YOLOv5X-Transformer for multi-scale object detection[J]. Multimedia Tools and Applications, 2024, 83(12): 36491-36517.
    [13] LIU J Y, LENG X X, LIU Y. Deep convolutional neural network based object detector for X-ray baggage security imagery[C]//Proceedings of the IEEE 31st International Conference on Tools with Artificial Intelligence. Piscataway: IEEE Press, 2020: 1757-1761.
    [14] WANG B Y, ZHANG L B, WEN L Y, et al. Towards real-world prohibited item detection: a large-scale X-ray benchmark[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2022: 5392-5401.
    [15] LIANG K J, SIGMAN J B, SPELL G P, et al. Toward automatic threat recognition for airport X-ray baggage screening with deep convolutional object detection[EB/OL]. (2019-12-13)[2024-06-19]. https://arxiv.org/abs/1912.06329.
    [16] MERY D, RIFFO V, ZSCHERPEL U, et al. GDXray: the database of X-ray images for nondestructive testing[J]. Journal of Nondestructive Evaluation, 2015, 34(4): 42. doi: 10.1007/s10921-015-0315-7
    [17] WEI Y L, TAO R S, WU Z J, et al. Occluded prohibited items detection: an X-ray security inspection benchmark and de-occlusion attention module[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 138-146.
    [18] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-08-06)[2024-06-19]. https://arxiv.org/abs/2107.08430.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  57
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 录用日期:  2024-08-16
  • 网络出版日期:  2024-09-09
  • 整期出版日期:  2026-02-28

目录

    /

    返回文章
    返回
    常见问答