Open-circuit fault diagnosis of power tubes in power converter of dual three-phase starter-generator system
-
摘要:
为解决航空双三相永磁辅助式同步磁阻起动发电系统电源变换器的功率管开路故障诊断问题,提出了基于
z 1-z 2坐标系电流和直流母线电压的功率管单相开路故障诊断与定位方法。采用空间矢量解耦方法建立电机本体和电源变换器模型;基于该模型分析电源变换器单相单管和单相双管开路故障特性及其在z 1-z 2坐标系电流轨迹和直流母线电压上反映出的故障特征;提出基于z 1-z 2坐标系电流和直流母线电压的单相单管及单相双管开路故障诊断与定位方法,检测故障发生,确定故障位置。通过实验平台验证所提方法的有效性,结果表明:所提方法可对电源变换器单相开路故障进行诊断与定位,进而为故障发生后的容错运行提供指导。Abstract:The aerospace dual three-phase permanent magnet assisted synchronous reluctance starter-generator system’s power converter had an open-circuit fault diagnosis issue. To address this, a single-phase open-circuit fault diagnosis and localization method for power tubes based on the bus voltage and
z 1-z 2 coordinate system current was proposed. Firstly, the starter-generator and power converter model were established by using the vector space decomposition method. Next, using this model, the single-phase double-tube open-circuit and single-phase single-tube open-circuit fault characteristics represented in the power converter’s DC bus voltage andz 1-z 2 coordinate system current trajectory were examined. A single-phase single-tube open circuit and single-phase double-tube open circuit fault diagnosis and location method based onz 1-z 2 coordinate system current and DC bus voltage was proposed to detect the occurrence of faults and determine the fault location. The experimental platform ultimately confirmed the method’s efficacy. The experimental findings show that the technique is capable of identifying and diagnosing power converter single-phase power tube open-circuit failures. This in turn provides important guidance for fault-tolerant operation after the fault occurs.-
Key words:
- fault diagnosis /
- power tube open circuit /
- starter-generator /
- power converter /
- harmonic current
-
图 14 单相单管开路故障情况下${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2}} $与${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2\_ {\mathrm{F}}}} $电流轨迹
Figure 14. Current trajectory of ${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2}} $ and ${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2\_ {\mathrm{F}}}} $ under single-phase single-tube open circuit fault
表 1 单相双管开路故障定位
Table 1. Single-phase double-tube open circuit fault location
最大值 单相双管开路故障位置 $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}}}} \right|} $ A $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}\_{{30}^ \circ }}}} \right|} $ E $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}\_{{60}^ \circ }}}} \right|} $ B $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}\_{{90}^ \circ }}}} \right|} $ F $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}\_{{120}^ \circ }}}} \right|} $ C $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}\_{{150}^ \circ }}}} \right|} $ D 表 2 单相单管开路故障定位
Table 2. Single-phase single-tube open circuit fault location
最大值 单管开路故障位置 $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}}}} $ AL $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{30}^ \circ }}}} $ EL $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{60}^ \circ }}}} $ BU $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{90}^ \circ }}}} $ FU $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{120}^ \circ }}}} $ CL $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{150}^ \circ }}}} $ DL $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}}}} $ AU $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{30}^ \circ }}}} $ EU $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{60}^ \circ }}}} $ BL $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{90}^ \circ }}}} $ FL $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{120}^ \circ }}}} $ CU $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{150}^ \circ }}}} $ DU -
[1] 邓景辉. 高速直升机关键技术与发展[J]. 航空学报, 2024, 45(9): 529085.DENG J H. Key technologies and development for high-speed helicopters[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529085(in Chinese). [2] 戴卫力, 王慧贞, 严仰光, 等. 航空起动/发电系统的发展趋势与研究现状[J]. 航空科学技术, 2010, 21(5): 28-32. doi: 10.3969/j.issn.1007-5453.2010.05.009DAI W L, WANG H Z, YAN Y G, et al. Development trend and current situation of starter-generator for aircraft engine[J]. Aeronautical Science and Technology, 2010, 21(5): 28-32(in Chinese). doi: 10.3969/j.issn.1007-5453.2010.05.009 [3] BHANGU B S, RAJASHEKARA K. Electric starter generators: their integration into gas turbine engines[J]. IEEE Industry Applications Magazine, 2013, 20(2): 14-22. [4] CAMPOS-DELGADO D U, ESPINOZA-TREJO D R. An observer-based diagnosis scheme for single and simultaneous open-switch faults in induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 671-679. doi: 10.1109/TIE.2010.2047829 [5] AN Q T, SUN L, SUN L Z. Current residual vector-based open-switch fault diagnosis of inverters in PMSM drive systems[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2814-2827. doi: 10.1109/TPEL.2014.2360834 [6] CAMPOS-DELGADO D U, PECINA-SÁNCHEZ J A, ESPINOZA-TREJO D R, et al. Diagnosis of open-switch faults in variable speed drives by stator current analysis and pattern recognition[J]. IET Electric Power Applications, 2013, 7(6): 509-522. doi: 10.1049/iet-epa.2013.0015 [7] SHI T C, HE Y G, WANG T, et al. An improved open-switch fault diagnosis technique of a PWM voltage source rectifier based on current distortion[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 12212-12225. doi: 10.1109/TPEL.2019.2905296 [8] JI Z D, LIU W. Open-circuit fault detection for three-phase inverter based on backpropagation neural network[J]. Neural Computing and Applications, 2019, 31(9): 4665-4674. doi: 10.1007/s00521-018-3663-2 [9] XU L, CAO M Y, SONG B Y, et al. Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network[J]. Neurocomputing, 2018, 311: 1-10. doi: 10.1016/j.neucom.2018.05.040 [10] PANG J, LIU W G, WEI Z H, et al. Online diode fault detection in rotating rectifier of the brushless synchronous starter generator[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11): 6943-6951. doi: 10.1109/TII.2020.2974268 [11] JIAO N F, HAN X, WEI Z H, et al. Online fault diagnosis for rotating rectifier in wound-rotor synchronous starter-generator based on geometric features of current trajectory[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 2952-2963. doi: 10.1109/TIE.2020.2979533 [12] 张竞文, 熊立新, 马宏昌, 等. 基于VMD-MPE的开关磁阻电机功率变换器故障诊断[J]. 北京航空航天大学学报, 2022, 48(6): 1022-1029.ZHANG J W, XIONG L X, MA H C, et al. Fault diagnosis of switched reluctance motor power converter based on VMD-MPE[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1022-1029(in Chinese). [13] NAJAFABADI T A, SALMASI F R, JABEHDAR-MARALANI P. Detection and isolation of speed-, DC-link voltage-, and current-sensor faults based on an adaptive observer in induction-motor drives[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1662-1672. doi: 10.1109/TIE.2010.2055775 [14] SALEHIFAR M, ARASHLOO R S, MORENO-EGUILAZ M, et al. Observer-based open transistor fault diagnosis and fault-tolerant control of five-phase permanent magnet motor drive for application in electric vehicles[J]. IET Power Electronics, 2015, 8(1): 76-87. doi: 10.1049/iet-pel.2013.0949 [15] DURAN M J, GONZALEZ-PRIETO I, RIOS-GARCIA N, et al. A simple, fast, and robust open-phase fault detection technique for six-phase induction motor drives[J]. IEEE Transactions on Power Electronics, 2017, 33(1): 547-557. [16] ARAFAT A, CHOI S, BAEK J. Open-phase fault detection of a five-phase permanent magnet assisted synchronous reluctance motor based on symmetrical components theory[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6465-6474. doi: 10.1109/TIE.2017.2682016 [17] CAI B P, ZHAO Y B, LIU H L, et al. A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5590-5600. doi: 10.1109/TPEL.2016.2608842 [18] XIA Y, XU Y, GOU B. A data-driven method for IGBT open-circuit fault diagnosis based on hybrid ensemble learning and sliding-window classification[J]. IEEE Transactions on Industrial Informatics, 2019, 16(8): 5223-5233. [19] BIANCHI N, ALBERTI L. MMF harmonics effect on the embedded FE analytical computation of PM motors[J]. IEEE Transactions on Industry Applications, 2010, 46(2): 812-820. doi: 10.1109/TIA.2010.2041098 [20] HU M J, HUA W, MA G T, et al. Improved current dynamics of proportional-integral-resonant controller for a dual three-phase FSPM machine[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 11719-11730. doi: 10.1109/TIE.2020.3047009 -


下载: