留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双三相起动发电系统电源变换器功率管开路故障诊断

王化吉 刘禹 孙高阳 李德洪 徐金全

王化吉,刘禹,孙高阳,等. 双三相起动发电系统电源变换器功率管开路故障诊断[J]. 北京航空航天大学学报,2025,51(9):2882-2893 doi: 10.13700/j.bh.1001-5965.2025.0425
引用本文: 王化吉,刘禹,孙高阳,等. 双三相起动发电系统电源变换器功率管开路故障诊断[J]. 北京航空航天大学学报,2025,51(9):2882-2893 doi: 10.13700/j.bh.1001-5965.2025.0425
WANG H J,LIU Y,SUN G Y,et al. Open-circuit fault diagnosis of power tubes in power converter of dual three-phase starter-generator system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2882-2893 (in Chinese) doi: 10.13700/j.bh.1001-5965.2025.0425
Citation: WANG H J,LIU Y,SUN G Y,et al. Open-circuit fault diagnosis of power tubes in power converter of dual three-phase starter-generator system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2882-2893 (in Chinese) doi: 10.13700/j.bh.1001-5965.2025.0425

双三相起动发电系统电源变换器功率管开路故障诊断

doi: 10.13700/j.bh.1001-5965.2025.0425
详细信息
    通讯作者:

    E-mail:xujinquan@buaa.edu.cn

  • 中图分类号: V242.2

Open-circuit fault diagnosis of power tubes in power converter of dual three-phase starter-generator system

More Information
  • 摘要:

    为解决航空双三相永磁辅助式同步磁阻起动发电系统电源变换器的功率管开路故障诊断问题,提出了基于z1-z2坐标系电流和直流母线电压的功率管单相开路故障诊断与定位方法。采用空间矢量解耦方法建立电机本体和电源变换器模型;基于该模型分析电源变换器单相单管和单相双管开路故障特性及其在z1-z2坐标系电流轨迹和直流母线电压上反映出的故障特征;提出基于z1-z2坐标系电流和直流母线电压的单相单管及单相双管开路故障诊断与定位方法,检测故障发生,确定故障位置。通过实验平台验证所提方法的有效性,结果表明:所提方法可对电源变换器单相开路故障进行诊断与定位,进而为故障发生后的容错运行提供指导。

     

  • 图 1  DTPPMA-SynRSG转子结构与定子绕组

    Figure 1.  DTPPMA-SynRSG rotor structure and stator winding

    图 2  电源变换器连接关系

    Figure 2.  Power converter connection relationship

    图 3  起动发电系统控制结构

    Figure 3.  Control structure of starter-generator system

    图 4  正常和上、下功率管开路故障情况下的桥臂电流路径

    Figure 4.  Bridge arm current path under normal conditions and open-circuit fault of upper and lower power transistors

    图 5  不同单相单管开路故障下的z1-z2坐标系直流母线电压轨迹

    Figure 5.  DC bus voltage trajectory of z1-z2 coordinate system under different single-phase single-tube open-circuit faults

    图 6  单相单管开路故障下绕组输出功率变化量各次谐波幅值比

    Figure 6.  Amplitude ratio of each harmonic component of change in winding output power under single-phase single-tube open circuit fault

    图 7  各相双管开路故障下的z1-z2坐标系电流轨迹

    Figure 7.  Current trajectory in z1-z2 coordinate system under open-circuit faults in each phase double-tube

    图 8  5、7次谐波电流对应的z1-z2坐标系电流轨迹

    Figure 8.  Current trajectories in the z1-z2 coordinate system corresponding to the 5th and 7th harmonic currents

    图 9  5、7次谐波电流滤波方法

    Figure 9.  The 5th and 7th harmonic current filtering method

    图 10  实验平台

    Figure 10.  Experimental platform

    图 11  滤波器幅频特性曲线

    Figure 11.  Amplitude-frequency characteristic curve of filter

    图 12  滤波前的单相双管开路故障下${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2}} $电流轨迹

    Figure 12.  Current trajectories of ${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2}} $ under single-phase double-tube open circuit fault before filtering

    图 13  滤波后的单相双管开路故障下${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2}} $电流轨迹

    Figure 13.  Current trace of ${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2}} $ under single-phase double-tube open circuit fault after filtering

    图 14  单相单管开路故障情况下${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2}} $与${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2\_ {\mathrm{F}}}} $电流轨迹

    Figure 14.  Current trajectory of ${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2}} $ and ${{\boldsymbol{i}}_{{\textit{z}}_1{\textit{z}}_2\_ {\mathrm{F}}}} $ under single-phase single-tube open circuit fault

    图 15  单相双管与单相单管开路故障下的直流母线电压

    Figure 15.  DC bus voltage under single-phase double-tube and single-phase single-tube open circuit fault

    图 16  单相双管与单相单管开路故障下的故障相电流波形

    Figure 16.  Fault phase current waveforms under single-phase double-tube and single-phase single-tube open-circuit faults

    图 17  A相双管开路故障情况下各相缺相故障指示值

    Figure 17.  Phase loss fault indication values of each phase in case of double-tube open circuit fault in phase A

    图 18  A相上桥臂功率管开路故障情况下各功率管开路故障指示值

    Figure 18.  Open circuit fault indication values of each power tube when upper bridge arm power tube of phase A has an open circuit fault

    表  1  单相双管开路故障定位

    Table  1.   Single-phase double-tube open circuit fault location

    最大值 单相双管开路故障位置
    $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}}}} \right|} $ A
    $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}\_{{30}^ \circ }}}} \right|} $ E
    $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}\_{{60}^ \circ }}}} \right|} $ B
    $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}\_{{90}^ \circ }}}} \right|} $ F
    $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}\_{{120}^ \circ }}}} \right|} $ C
    $ \displaystyle\sum {\left| {{i_{{\textit{z}}_1\_{\rm F}\_{{150}^ \circ }}}} \right|} $ D
    下载: 导出CSV

    表  2  单相单管开路故障定位

    Table  2.   Single-phase single-tube open circuit fault location

    最大值 单管开路故障位置
    $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}}}} $ AL
    $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{30}^ \circ }}}} $ EL
    $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{60}^ \circ }}}} $ BU
    $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{90}^ \circ }}}} $ FU
    $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{120}^ \circ }}}} $ CL
    $ \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{150}^ \circ }}}} $ DL
    $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}}}} $ AU
    $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{30}^ \circ }}}} $ EU
    $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{60}^ \circ }}}} $ BL
    $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{90}^ \circ }}}} $ FL
    $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{120}^ \circ }}}} $ CU
    $ - \displaystyle\sum {{i_{{\textit{z}}_1\_{\rm F}\_{{150}^ \circ }}}} $ DU
    下载: 导出CSV
  • [1] 邓景辉. 高速直升机关键技术与发展[J]. 航空学报, 2024, 45(9): 529085.

    DENG J H. Key technologies and development for high-speed helicopters[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529085(in Chinese).
    [2] 戴卫力, 王慧贞, 严仰光, 等. 航空起动/发电系统的发展趋势与研究现状[J]. 航空科学技术, 2010, 21(5): 28-32. doi: 10.3969/j.issn.1007-5453.2010.05.009

    DAI W L, WANG H Z, YAN Y G, et al. Development trend and current situation of starter-generator for aircraft engine[J]. Aeronautical Science and Technology, 2010, 21(5): 28-32(in Chinese). doi: 10.3969/j.issn.1007-5453.2010.05.009
    [3] BHANGU B S, RAJASHEKARA K. Electric starter generators: their integration into gas turbine engines[J]. IEEE Industry Applications Magazine, 2013, 20(2): 14-22.
    [4] CAMPOS-DELGADO D U, ESPINOZA-TREJO D R. An observer-based diagnosis scheme for single and simultaneous open-switch faults in induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 671-679. doi: 10.1109/TIE.2010.2047829
    [5] AN Q T, SUN L, SUN L Z. Current residual vector-based open-switch fault diagnosis of inverters in PMSM drive systems[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2814-2827. doi: 10.1109/TPEL.2014.2360834
    [6] CAMPOS-DELGADO D U, PECINA-SÁNCHEZ J A, ESPINOZA-TREJO D R, et al. Diagnosis of open-switch faults in variable speed drives by stator current analysis and pattern recognition[J]. IET Electric Power Applications, 2013, 7(6): 509-522. doi: 10.1049/iet-epa.2013.0015
    [7] SHI T C, HE Y G, WANG T, et al. An improved open-switch fault diagnosis technique of a PWM voltage source rectifier based on current distortion[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 12212-12225. doi: 10.1109/TPEL.2019.2905296
    [8] JI Z D, LIU W. Open-circuit fault detection for three-phase inverter based on backpropagation neural network[J]. Neural Computing and Applications, 2019, 31(9): 4665-4674. doi: 10.1007/s00521-018-3663-2
    [9] XU L, CAO M Y, SONG B Y, et al. Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network[J]. Neurocomputing, 2018, 311: 1-10. doi: 10.1016/j.neucom.2018.05.040
    [10] PANG J, LIU W G, WEI Z H, et al. Online diode fault detection in rotating rectifier of the brushless synchronous starter generator[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11): 6943-6951. doi: 10.1109/TII.2020.2974268
    [11] JIAO N F, HAN X, WEI Z H, et al. Online fault diagnosis for rotating rectifier in wound-rotor synchronous starter-generator based on geometric features of current trajectory[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 2952-2963. doi: 10.1109/TIE.2020.2979533
    [12] 张竞文, 熊立新, 马宏昌, 等. 基于VMD-MPE的开关磁阻电机功率变换器故障诊断[J]. 北京航空航天大学学报, 2022, 48(6): 1022-1029.

    ZHANG J W, XIONG L X, MA H C, et al. Fault diagnosis of switched reluctance motor power converter based on VMD-MPE[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1022-1029(in Chinese).
    [13] NAJAFABADI T A, SALMASI F R, JABEHDAR-MARALANI P. Detection and isolation of speed-, DC-link voltage-, and current-sensor faults based on an adaptive observer in induction-motor drives[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1662-1672. doi: 10.1109/TIE.2010.2055775
    [14] SALEHIFAR M, ARASHLOO R S, MORENO-EGUILAZ M, et al. Observer-based open transistor fault diagnosis and fault-tolerant control of five-phase permanent magnet motor drive for application in electric vehicles[J]. IET Power Electronics, 2015, 8(1): 76-87. doi: 10.1049/iet-pel.2013.0949
    [15] DURAN M J, GONZALEZ-PRIETO I, RIOS-GARCIA N, et al. A simple, fast, and robust open-phase fault detection technique for six-phase induction motor drives[J]. IEEE Transactions on Power Electronics, 2017, 33(1): 547-557.
    [16] ARAFAT A, CHOI S, BAEK J. Open-phase fault detection of a five-phase permanent magnet assisted synchronous reluctance motor based on symmetrical components theory[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6465-6474. doi: 10.1109/TIE.2017.2682016
    [17] CAI B P, ZHAO Y B, LIU H L, et al. A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5590-5600. doi: 10.1109/TPEL.2016.2608842
    [18] XIA Y, XU Y, GOU B. A data-driven method for IGBT open-circuit fault diagnosis based on hybrid ensemble learning and sliding-window classification[J]. IEEE Transactions on Industrial Informatics, 2019, 16(8): 5223-5233.
    [19] BIANCHI N, ALBERTI L. MMF harmonics effect on the embedded FE analytical computation of PM motors[J]. IEEE Transactions on Industry Applications, 2010, 46(2): 812-820. doi: 10.1109/TIA.2010.2041098
    [20] HU M J, HUA W, MA G T, et al. Improved current dynamics of proportional-integral-resonant controller for a dual three-phase FSPM machine[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 11719-11730. doi: 10.1109/TIE.2020.3047009
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  24
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-01
  • 录用日期:  2025-07-11
  • 网络出版日期:  2025-07-16
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答