Analysis of time-domain modes in FDTD-diakoptics
-
摘要: 时域模函数的选取是使用Diakoptics技术分析微波结构的一个重要步骤.二维贝塞尔函数系作为Diakoptics技术应用于开放式微波结构中的时域模函数是适宜的.将一维傅里叶-贝塞尔函数展开定理扩展到二维,对二维傅里叶-贝塞尔函数系的完备正交性进行了分析证明,从而阐述了贝塞尔函数系作为时域模函数的有效性.最后比较采用二维傅立叶-贝塞尔函数系做模函数的FDTD-Diakoptics计算结果与传统FDTD计算结果,二者吻合良好.Abstract: It is very important to choose proper time domain modes when microwave structures were analyzed by time domain Diakoptics. Two dimensional Bessel functions is proper time domain modes in time domain Diakoptics. One dimensional Bessel functions expand theorem was extended to two dimensional, the completeness and orthotropic of two dimensional Bessel functions were proved. Based on analysis of electromagnetic field distributions for such open microwave structures as coplanar strips, the zero and one order Bessel functions were proved to be the proper time domain mode functions. The results of this method and the finite difference time domain (FDTD) were compared and there are good sameness between them.
-
Key words:
- microwave circuits /
- Bessel functions /
- finite difference methods /
- time-domain modes
-
[1] Su Donglin, Park Junseok, Qian Yongxi, et al. Waveguide bandpass filter analysis and design using multimode parallel FDTD Diakoptics[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(6):867~876 [2] 李 梅,苏东林,杨争光. 开放式微波结构中的时域模函数初探[J]. 北京航空航天大学学报,2003,29(4):327~330 Li Mei, Su Donglin, Yang Zhengguang. Apply Diakoptics arithmetic in RF & microwave circuit design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003,29(4):327~330(in Chinese) [3] 柳重堪. 正交函数及其应用[M]. 北京:国防工业出版社,1982 Liu Chongkan. Orthotropic function series and the related application[M]. Beijing:National Defence Industry Press, 1982(in Chinese) [4] 徐润炎. 正交函数系及其有关课题[M]. 大连:大连工学院出版社,1987 Xu Runyan. Orthotropic function series and the related problems[M]. Dalian:Dalian University of Technology Press,1987 [5] Bromwich T J I. An introduction to the theory of infinite series[M]. Cambridge:Cambridge University Press,1925 [6] 王竹溪,郭敦仁. 特殊函数概论[M]. 北京:北京大学出版社,2000 Wang Zhuxi, Guo Dunren. Special function generality[M]. Beijing:Peking University Press, 2000(in Chinese) [7] 沈永欢,梁在中,许履瑚,等. 实用数学手册[M]. 北京:科学出版社,2001 Shen Yonghuan, Liang Zaizhong, Xu Lühu, et al. Practical mathematics manual[M]. Beijing:Science Press, 2001(in Chinese) [8] 菲赫金哥儿茨. 微积分学教程[M]. 北京:高等教育出版社,1952 Feihogenci. Calculous tutorial[M]. Beijing:Higher Education Press, 1952(in Chinese) [9] Titchmarsh. Eigenfunction expansions associated with second order differential equations[M]. Cambridge:Cambridge University Press, 1946 [10] 刘式适,刘式达. 特殊函数[M]. 北京:气象出版社,1988 Liu Shishi, Liu Shida. Special function[M]. Beijing:Whether Press, 1988(in Chinese) [11] 奚定平. 贝塞尔函数[M]. 北京:高等教育出版社,1998 Xi Dingping. Bessel function[M]. Beijing:Higher Education Press, 1998(in Chinese) [12] Watson G H. A treatise on the theory of Bessel functions[M]. Cambridge:Cambridge University Press, 1952
点击查看大图
计量
- 文章访问数: 2553
- HTML全文浏览量: 55
- PDF下载量: 902
- 被引次数: 0