Human-imitating control based on chaotic neural networks
-
摘要: 提出一种基于混沌神经网络(CNN)的拟人智能控制方法.首先利用拟人智能控制理论得到定性控制律(线性或非线性),然后利用CNN实现控制律的定量化.Hopfield神经网络具有快速的优化能力,但容易陷入局部极小,将遍历性的渐变混沌噪声引入其中,形成具有快速全局优化能力的CNN.对二级倒立摆控制的仿真和实验结果均表明该方法有效.Abstract: A control method was proposed, which combines the human-imitating control theory and the optimization capability of chaotic neural networks (CNN). Firstly, a qualitative control law(linear or nonlinear control law)was formed according to human-imitating control. Then, the qualitative control law was quantified by CNN. Hopfield neural network is recognized as a useful tool for optimization problems. However, it is often trapped to a local minimum solution. Therefore, gradually reducing chaotic noise is added to the networks to form a powerful globe optimization algorithm. Applying the proposed control method to a double inverted pendulum, the results of numerical simulations and experiments both demonstrate the valid of this control method.
-
Key words:
- neural networks /
- automatic control systems /
- optimization algorithms /
- chaos
-
[1] 张明廉,孙昌龄,杨亚炜.拟人控制二维单倒立摆[J].控制与决策,2002,17(1):53~56 Zhang Minglian, Sun Changling, Yang Yawei. Hunan-imitating control for 2-D inverted pendulum[J]. Control and Decision, 2002,17(1):53~56(in Chinese) [2] He Yuyao.Chaotic simulated annealing with decaying chaotic noise[J].IEEE Trans On Neural Networks, 2002,13(6):1526~1531 [3]Kwok T, Smith A. A unified framework for chaotic neural-network approaches to combinatorial optimization[J].IEEE Trans On Neural Networks, 1999,10(4):978~981 [4] 王 凌,郑大钟,李清生.混沌优化方法的研究进展[J].计算机技术与自动化, 2001,20(1):1~5 Wang Ling, Zheng Dazhong, Li Qingsheng.Survey on chaotic optimization methods .Computing Technology and Automation, 2001,20(1):1~5(in Chinese) [5] 司昌龙.拟人智能控制及控制律转化研究 .北京:北京航空航天大学自动化科学与电气工程学院,2003 Si Changlong.Research on human-imitating intelligent control and the control law quantifying .Beijing:School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, 2003(in Chinese)
点击查看大图
计量
- 文章访问数: 3623
- HTML全文浏览量: 196
- PDF下载量: 873
- 被引次数: 0