Researches on the resolution of fast large time step entropy condition scheme
-
摘要: 提出了高分辨率快速大时间步长熵条件格式的构造方法.用激波管问题对一族熵条件格式进行研究.在精度、步长、限制器方面进行了详细的数值实验,研究了同样计算量下各种格式的表现品质.从理论上保证了大时间步长格式的无振荡性质,从具体的数值实验分析中确定了大时间步长格式的分辨率问题.Abstract: A method of high resolution fast large time step entropy condition scheme is designed. A class of entropy schemes is studied with shock tube problems for numerical examples. Numerical experiment is carefully designed to study the accuracy, time step, and limiters of the schemes. The quality of different schemes is compared under the same computing time. The nonoscillatory property is guaranteed theoretically for large time step schemes. The resolution problem for large time step schemes is verified via the analysis of numerical experiments.
-
Key words:
- difference schemes /
- fluid mechanics equations /
- entropy condition /
- large time step /
- fluid solver
-
[1] 董海涛,张立东,李椿萱.基于熵条件二阶差分格式的嵌套网格分区算法[J].计算物理,2003,20(2):102~106 Dong Haitao, Zhang Lidong, Lee Chunhian. Domain decomposition method utilizing chimera grids in conjunction with a second order difference scheme based on an entropy condition[J]. Chinese Journal of Computational Physics, 2003,20(2):102~106(in Chinese) [2] Dong Haitao, Zhang Lidong, Lee Chunhian. High order discontinuity decomposition entropy condition schemes for Euler equations [J]. Computational Fluid Dynamics Journal, 2002, 10(4):448~457
点击查看大图
计量
- 文章访问数: 3737
- HTML全文浏览量: 129
- PDF下载量: 826
- 被引次数: 0