Multi-level and multi-policy model of distributed network information filtering system
-
摘要: 在分析现有网络信息过滤技术的基础上,描述了一种多层次、多策略、可扩展的分布式网络信息过滤系统模型框架.该模型框架包括网络信息数据分析、过滤及转发等功能,采用细粒度的内容过滤策略,在保证信息数据安全性的基础上,提高了数据转发的速度,缩短了数据传送的延时,并可以插件的形式灵活地挂载过滤程序,具有很好的开放性和可扩展性.该系统模型可以根据具体的需求,以模块的形式灵活地重组和配置各项功能,可在分布式环境下协同工作,提高了系统的性能.本系统的各种数据处理过程对用户是完全透明的,减少了对用户的影响.Abstract: On the basis of analyzing the current network information filtering technologies, a scalable multi-level and multi-policy model of a distributed network information filtering system was described, which combines the functions of the packet analyzing, filtering and forwarding. A fine-granularity information filtering policy was provided, which effectively enhances the information security, increases the speed of data transfer, and decreases the latency. The filtering plug-ins can be conveniently configured and loaded. The model is scalable and open in architecture that can be easily configured and organized in order to meet a variety of requirements and run on the distributed system for gaining better performances. The information processing is transparent to the client hosts and applications so that the side effects to the users are minimal.
-
[1] 辛 涛, 周明天. 混合型防火墙的设计与实现[J]. 计算机研究与发展, 1998, 35(10):882~885 Xin Tao, Zhou Mingtian. Design and implementation of a hybrid fire-wall system[J]. Compute Research & Development, 1998, 35(10):882~885(in Chinese) [2] Younglove R. Virtual private networks——how they work[J]. Computing & Control Engineering Journal, 2000, 11(11):260~266 [3] 马太恒, 姜建春, 陈伟锋,等. 基于Agent的分布式入侵监测系统模型[J]. 软件学报, 2000, 11(10):1312~1319 Ma Taiheng, Jiang Jianchun, Chen Weifeng,et al. Distributed model of intrusion detection system based on agent[J]. Journal of Software, 2000, 11(10):1312~1319(in Chinese) [4] Lerida J L, Grackzy S M, Vina A. Detecting security vulnerabilities in remote TCP/IP networks:an approach using security scanners . Proceedings of IEEE 33rd Annual 1999 International Carnahan Conference . Madrid, 1999. 446~460 [5] Banisar D. Battle for control of encryption technology[J]. IEEE Software, 1993, 10(4):95~97 期刊类型引用(8)
1. 徐红,矫桂娥,张文俊,陈一民. 基于卷积神经网络的结构化非平衡数据分类算法. 计算机工程. 2023(02): 81-89 . 百度学术
2. 王萌铎,续欣莹,阎高伟,史丽娟,郭磊. 基于AdaBoost集成加权宽度学习系统的不平衡数据分类. 计算机工程. 2022(04): 99-105+112 . 百度学术
3. 张利剑,陈晋鹏. 基于扩展Jarvis-Patrick聚类的异常检测算法优化及检测仿真. 电子设计工程. 2022(13): 100-104 . 百度学术
4. 张伊扬,钱育蓉,陶文彬,冷洪勇,李自臣,马梦楠. 基于深度学习的属性图异常检测综述. 计算机工程与应用. 2022(19): 1-13 . 百度学术
5. 苏江军,董一鸿,颜铭江,钱江波,辛宇. 面向复杂网络的异常检测研究进展. 控制与决策. 2021(06): 1293-1310 . 百度学术
6. 陈波冯,李靖东,卢兴见,沙朝锋,王晓玲,张吉. 基于深度学习的图异常检测技术综述. 计算机研究与发展. 2021(07): 1436-1455 . 百度学术
7. 张建宁. 基于改进动态图算法的软件保护技术. 科技通报. 2021(08): 56-60 . 百度学术
8. 吴德胜,管媛辉. 移动互联网异常入侵行为下攻击意图预测仿真. 计算机仿真. 2018(12): 241-244 . 百度学术
其他类型引用(5)
-

计量
- 文章访问数: 2565
- HTML全文浏览量: 90
- PDF下载量: 6
- 被引次数: 13