Diagnose of Noise Fatigue Sources of a Helicopter
-
摘要: 首次开展直升机声疲劳源的诊断工作,基于小波变换原理,建立了直升机声疲劳源的诊断方法与技术,它包含小波分解与重构阶数的确定、噪声信号分解、分解信号重构以及分离信号的1/3倍频程计算等方面内容.该方法具有低频信号分辨率高和易于重构等特征,特别适合直升机的主、尾桨噪声信号进行分离.通过对模拟的主、尾桨信号进行分离,并将分离后的信号与原始信号相比,发现误差不超过2.3%,因此,验证了该法的有效性.另外,应用该法还对小松鼠直升机所记录的噪声信号进行主、尾桨噪声分离,所得结果表明:建立的直升机声疲劳源的诊断技术,能够处理直升机非平稳噪声信号,可以完成直升机主、尾桨噪声的分离.Abstract: According to the wavelet transformation theory, a diagnose method for helicopters is established, including the order number of the wavelet decomposition and reconstruction, the noise signal decomposition, the separate signal reconstruction and 1/3 times frequency calculation. Since this method is with the high distinguishability for the low frequency signal and easy to reconstruct, it is fit for the noise signal separation of helicopter. By this method, the simulating noise signals are separated, and the separated signals are compared with the original signals, then it is found that the error between the separated signal and the original signal is lower than 2.3 percent. Moreover, on the basis of this method, the noise signals of the main rotor and tail rotor recorded from an AS350 helicopter are separated. It is shown that this diagnose method can be used to treat the non-stationary noise signals and separate the noise signals of the main rotor and tail rotor of the helicopter.
-
Key words:
- helicopters /
- noise /
- diagnose
-
[1]唐狄毅,李文兰,乔渭阳. 飞机噪声基础[M]. 西安:西北工业大学出版社, 1995. [2]杨福生. 小波变换的工程分析与应用[M]. 北京:科学出版社,1999. [3]张贤达. 现代信号处理[M]. 北京:清华大学出版社,1993. [4]赵松年,熊小芸. 子波变换与子波分析[M]. 北京:电子工业出版社,1996. [5]丁庆海,庄志洪,祝龙石,等. 混沌、分形和小波理论在被动声信号特征提取中的应用[J]. 声学学报,1999,24(2):197~203. [6]吴国清,任 锐,陈耀明,等. 舰船辐射噪声的子波分析[J]. 声学学报,1996,21(4):700~708. [7]李在庭,高德勇,何遵文. 直升机声信号特征提取和识别技术[J]. 兵工学报,1996,17(1):55~59. [8]潘旭峰,谢 波,李晓雷. 小波变换理论及其在机械故障诊断中的应用[J]. 振动与冲击,1998,17(1):14~19. [9]刘献栋,李其汉. 小波变换在转子系统动静件早期碰摩故障诊断中的应用[J]. 航空学报,1999,20(3):220~223. [10]维锋,刘万锋. 子波变换在结构疲劳裂纹动态检测中的应用研究[J]. 振动与冲击,1998,17(3):66~70. [11]赵鹤鸣,周旭东,金延庆,等. 基于小波变换的重叠语音基频提取及声调识别[J]. 声学学报,1999,24(1):87~93. [12]应怀樵. 现代振动与噪声技术[M].北京:航空工业出版社,1997. [13]李方泽,刘馥清,王 正. 工程振动测试与分析[M].北京:高等教育出版社,1992. [14]刘瑞岩. 机械状态监测与故障诊断[M].长沙:国防科技大学出版社,1993. [15]Mallat S. A theory for multi-resolution decomposition the wavelet representation[J]. IEEE Trans,1989,11(7):674~689. [16]程 俊. 小波变换用于信号突变的检测[J].通信学报,1995,16(3):96~104.
点击查看大图
计量
- 文章访问数: 2782
- HTML全文浏览量: 101
- PDF下载量: 809
- 被引次数: 0