A Taylor Series Method in Nonlinear Structural Dynamics
-
摘要: Taylor级数方法是结构动力分析中一种新的时间积分方法,它在求解线性问题方面的理论和应用已经比较完善和成熟.将Taylor方法进一步用于非线性结构动响应的求解,对于非线性项可以表示为多元多项式的结构动响应问题,建立了Taylor级数方法的理论,给出了递归求解通式.通过对典型方程的求解,阐述了Taylor级数方法的应用.算例表明,Taylor级数方法解决非线性结构动响应问题是行之有效的.Abstract: A Taylor series method for solving nonlinear structural dynamics problems where nonlinear items can be expressed as a polynomial with multiple variables was established. Different from existing methods, the Taylor series method satisfies governing equations in continuous intervals rather than at discrete time instants or in an average form. It solves dynamics problems through a sequence of recursions of Taylor expansion coefficients, without the necessity of solving simultaneous equations. The method was compared with the Runge-Kutta method through solving classical equations of Duffing, Van der Pol and the free vibration equation of two DOFs with quadratic nonlinear items. Numerical results indicated that the proposed Taylor series method is an excellent alternative for solving the aforementioned nonlinear dynamics problems.
-
Key words:
- non-linear structural analysis /
- numerical integration /
- polynomials /
- Taylor series
-
[1]Wang S M, Shenoi R A, Zhao L B. A new time integration method in structural dynamics using Taylor series[J]. Proc Instn Engrs Part C, 1998, 212:567~575. [2]王寿梅, 赵国兴. 用台劳级数求解非线性代数和微分方程组[J]. 北京航空航天大学学报, 1996, 22(3):326~331. [3]Subbaraj K, Dokainish M A. A survey of direct time-integration methods in computational structural dynamics:I. Explicit methods[J]. Computer and Structure, 1989, 32(6):1371~1386. [4]李师正. 多项式代数[M]. 山东:山东人民出版社,1981. [5]Thomson W T. Theory of vibration with applications[M]. Englewood Cliffs N J:Prentice Hall, 1972. 401~404. [6]Nayfeh A H, Mook D T. 非线性振动[M]. 北京:高等教育出版社, 1990.
点击查看大图
计量
- 文章访问数: 2479
- HTML全文浏览量: 129
- PDF下载量: 1007
- 被引次数: 0