Method of Flying Dynamic Real-Time Forecast Based on BP Neural Network
-
摘要: 针对传统Back-Propagation网络(简称BP网络)收敛速度慢、网络灵敏度过高和隐含层数难以确定等缺陷,提出一个改进型BP网络,提高了网络预测的实时性和精确性;然后将之应用到飞行动态预测问题上,充分发挥网络模型的学习、记忆和动态自适应性的优势,力图解决飞行器轨迹的描述和预测问题.Abstract: The disadvantages of the traditional BP neural network include low speed of convergence, high sensitivity and indefinite layers, etc. This paper develops a new BP network model, which can improve the quality of the real time and precision, and applies the developed BP network model to the dynamic forecast of aircraft track. Owing to the advantages of BP network in the aspects of acquisition, remembrance and self-adaptation, it can make the results of the dynamic forecast more efficient and more precise.
-
Key words:
- neural network /
- chronological estimation /
- dynamic forecast
-
[1] 张立明.人工神经网络模型及其应用[M].上海:复旦大学出版社,1993.165~179. [2] 王文剑.一种输入驱动的BP网络高效学习算法[J].系统工程理论与实践,2000,1(4):15~19. [3] Parles Alexander G. An accelerated learning algorithm for multilayer perception networds[J]. IEEE Trans on Neural Networks, 1994,5(3):493~495. [4] 李敏生.BP学习算法的改进与应用[J].北京理工大学学报(自然科学版),1999,6(4):24~27. [5] Medsker R. Hybrid neutral network and expert system[M].Massachusetts:Kluwer Academic Publishers,1994. 58~62. [6] Looney G G. Pattern recognition using neural networks. New York:Oxford University Press, 1997.79~85.
点击查看大图
计量
- 文章访问数: 2943
- HTML全文浏览量: 72
- PDF下载量: 1371
- 被引次数: 0