Stability and Precision Analysis for Precise Integration Method
-
摘要: 分析了结构动力分析的精细积分方法的稳定性、精度和计算工作量,讨论了离散时间间隔、指数矩阵幂级数展开式的截断阶数L以及2N类算法的阶数N的优化问题.说明了精细积分方法是条件稳定的.综合考虑稳定性、精度和计算工作量,判定截断阶数L取4时精细积分方法的总体效果最好,并给出了N的参数优化公式.最后给出2个例题验证了稳定性和精度分析的正确性.Abstract: The precise integration method, one of the direct integration methods for problems in structural dynamics, was analyzed. Several comments were made regarding to its formulation, numerical stability, computational accuracy and cost. The method is conditionally stable and belongs to the category of explicit time-integration methods. The precise integration method is based on the 2N-type algorithm for computation of exponential matrix. It controls the order N to satisfy the accuracy requirement. Its numerical results have excellent correlation. According to the analytic results, the numerical stability, computational accuracy and cost depend to a large degree on the selection of the parameters, time-division, truncation order and order of 2N-type algorithm. Then the optimal formulation of parameters was given. And several points about the precise integration method were illuminated theoretically. Finally, two numerical examples verified the validity of the stability, precision and the optimal formulation.
-
[1]Bathe K J, Wilson E L. Numerical methods in finite element analysis[M]. New Jersy:Prentice-Hall,1976. [2]Wang S M. A new time integration method in structure analysis . In:Gong Y N, ed. Proceedings of APCATS'94 . HangZhou:International Academic Publisher, 1994. [3]Wang S M, Shenoi R A, Zhao L B. A new time integration method in structural dynamics using Taylor series[J]. Proc Instn Engrs Part C, 1998, 212:567~575. [4]王寿梅, 赵国兴. 用台劳级数求解非线性代数和微分方程组[J].北京航空航天大学学报, 1996, 22 (3):326~331. [5]钟万勰. 结构动力方程的精细积分法[J]. 大连理工大学学报, 1994, 34 (2):131~136. [6]钟万勰. 暂态历程的精细计算方法[J]. 计算结构力学及其应用, 1995, 12 (1):1~6. [7]王高雄, 周之铭, 朱思铭,等. 常微分方程[M]. 第2版. 北京:高等教育出版社, 1983. 203~206. [8]陈奎孚, 张森文. 精细时程积分法的参数选择[J]. 计算力学学报, 1998, 15(3):301~305.
点击查看大图
计量
- 文章访问数: 2889
- HTML全文浏览量: 308
- PDF下载量: 1763
- 被引次数: 0