Neural Network Approach to R&D Project Termination
-
摘要: 在比较研究国内外R&D项目中止决策理论方法的基础上,论述了对正在进行的R&D项目进行正确的中止决策模式识别的重要意义.探讨了神经网络(NN)理论用于R&D项目中止决策的可行性,提出了适用于正在进行的R&D项目的中止决策分析的Hopfield神经网络模式识别方法,并用实例验证了方法的有效性.方法的实施较为方便、计算较为简单,结果也令人满意.表明Hopfield神经网络模式识别方法在R&D项目中止决策领域具有应用前景.Abstract: In order to help manager to make termination decision for the ongoing R&D project timely and correctly, the authors review and compare the theory and methodology of termination decision from the literature. Furthermore, we discuss the considerable importance to identify attributes of an ongoing R&D project. To identify attributes of an ongoing R&D project, the authors examine characteristics and scopes of neural network. Thus, the feasibility of neural network, which is possibly used in R&D project termination decisions, is further explored. On the basis of the theory and methodology of neural network, this study attempts to develop a mode identification method to make R&D project termination decisions in an effective manner. Finally, the validity of the proposed method is verified by an example. The result shows that the method is both simple and practical.
-
Key words:
- pattern recognition /
- neural networks /
- decision theory /
- R&D project
-
[1] 官建成,屈交胜,靳平安. 试论 R&D预研项目的中止决策[J]. 中外科技政策与管理, 1995(10):33~36. [2]Kleinchmidt E J, Cooper R. The relative importance of new product success determinants-perception versus reality[J]. R&D Management, 1995, 25(3):281~298. [3]Halman J, Keizer J. Diagnosing risks in product-innovation projects . International Journal of Project Management,1994,12(2):133~142. [4]陈国宏. R&D项目中止决策的Fuzzy模式识别[J]. 科学学研究,1998,16(3):68~74. [5]屈交胜,官建成.R&D项目中止决策的Fuzzy动态综合评判[J]. 科研管理, 1996, 17(9):36~42. [6]Brockhoff K. R&D project termination decisions by discriminant analysis-an international comparison[J]. IEEE Trans on EM, 1994, 41(3):245~253. [7]Bard J, Balachandra R, Kadfmann P. An interactive approach to R&D project selection and termination[J]. IEEE Trans on EM, 1988, 35(3):139~146. [8]王守荣. 研究与开发项目中止决策的经济分析[J]. 科学学研究, 1994,12(2):45~51. [9]Rumelhart D E,Hinton G E. Learning representations by back-propagating errors[J]. Nature,1986,323:533~536. [10] 程相君,王春宁, 陈生潭. 神经网络原理及其应用[M].北京:国防工业出版社, 1995.124~129. -

计量
- 文章访问数: 2619
- HTML全文浏览量: 77
- PDF下载量: 123
- 被引次数: 0