Complexity of Motions of Gyroscope
-
摘要: 建立了外环轴水平放置的重力对称陀螺仪的运动方程.并将陀螺仪转子的质心位置作为扰动, 在一定条件下, 首先研究了自由陀螺仪的运动, 并给出力学意义解释; 然后利用Melnikov方法和KAM理论研究了非自由陀螺仪的运动.研究结果表明: 在陀螺仪转子的质心与支架中心不重合且充分接近, 或陀螺仪能量充分大时, 陀螺仪的运动出现Smale马蹄意义下的混沌; 同时它的Hamiltonian流存在KAM不变环面和不变闭曲线.Abstract: The motions of a gravity symmetric gyroscope, whose outer ring's axis is placed horizontally, are dealt with. Firstly, the motions of a free gyroscope are studied and explained in the sense of mechanics under a certain condition. The Melnikov's methods and KAM theory can be used to study the motions of a non-free gyroscope if its rotor's gravity center can be treated as a perturbation. It is shown that the motions of the non free gyroscope are chaotic in the sense of Smale horseshoe, and the KAM invariant tori and closed curves exist in the Hamiltonian flows of the perturbed system if the gravity center of the gyroscope's rotor doesn't coincide with the center of its supports, and the distance between them is sufficiently small, or its energy is sufficiently large in comparison with its potential energy.
-
Key words:
- gyroscopes /
- gravity /
- motion /
- chaos /
- Melnikov function /
- invariant tori /
- KAM theory
-
1. 马格奴斯 K. 陀螺理论与应用. 北京: 国防工业出版社, 1983 2. 刘延柱. 万向支架陀螺仪的摄动理论. 力学与实践, 1982, 4(3):37~39 3. Guan K Y. The KAM theory of double pendulum. Ann of Diff Eqs, 1998, 14(2):120~130 4. 胡志兴,管克英. 复杂双摆的KAM理论. 高校应用数学学报(A),1999,14(2):147~154 5. Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcation of vector fields. New York:Springer-Verlag, 1983 6. Arnold V I. Mathematical methods of classical mechanics. Berlin:Springer-Verlag, 1978
点击查看大图
计量
- 文章访问数: 2616
- HTML全文浏览量: 217
- PDF下载量: 219
- 被引次数: 0