Variable Structure Exponential Stabilization of Uncertain Nonholonomic Dynamic Systems
-
摘要: 链式系统是非完整运动学系统的一种标准形式. 通过坐标和输入变换,许多非完整运动学系统均可化为这种形式.当非完整运动学系统可化为链式系统时, 直接基于一类不确定非完整动力学系统, 利用变结构控制的方法设计了全局镇定控制律. 该控制律的特点是: 存在一个有限时间,使得在此时间后闭环系统的状态可以以任意速率指数收敛到零. 最后将该方法用于一类移动机器人的控制器设计,仿真结果验证了该方法的有效性.Abstract: The chained form control system is a kind of canonical form of nonholonomic kinematic systems. Many nonholonomic kinematic systems can be transformed into this kind of form by coordinate and input transformations.Using variable structure control, a globally stabilizing controller is given directly based on nonholonomic dynamic systems with uncertainties when the nonholonomic constraints can be converted into chained form control systems. The proposed controller satisfies that there exists a finite time,after that time, the states of the closed loop system exponentially converge to zero with an arbitrarily given rate.The proposed result is used to stabilize a mobile robot.Simulation result shows that the approach is effective.
-
1. Brockett W. Asymptotic stability and feedback stabilization.In:Brockett W, Millman R,Sussmann H,eds. Differential Geometric Control Theory. Boston:Birkhauser, 1983.181~208 2. Kolmanovsky L V, McClamroch N H. Development in nonholonomic control problems. IEEE Control Systems, 1995,15(6):20~36 3. Kolmanovsky L V,McClamroch N H. Application of integrator backsteping to nonholonomic control problems.In:IFAC Nonlinear Control Systems Design.1995.673~678 4. Pomet J P. Explicit design of time varying stabilizing control laws for a class of controllable systems without drift. Systems and Control Letters, 1992,18:147~158 5. Robert T M,Murry R M. Exponential stabilization of nonlinear driftless control systems via time-varying homogeneous feedback. IEEE Trans AC, 1997, 42(5):614~628 6. Wash G C,Bushnell L G. Stabilization of multiple input chained form control systems. Syst and Contr Lett, 1995, 25:227~234 7. Campion G. Controllability and state feedback stabilizability of nonholonomic mechanical systems.In:Canudas C W,ed. Advanced Robot Control. New York:Springer-Verlag,1991.106~124 8. Bloch A, Drakunov S. Stabilization of a nonholonomic system via sliding modes.In:Proc 33rd CDC.New York:IEEE, 1994.2961~2963
点击查看大图
计量
- 文章访问数: 2806
- HTML全文浏览量: 191
- PDF下载量: 215
- 被引次数: 0