Fuzzy Adaptive Controller Based on BP Algorithm
-
摘要: 在对不熟悉的过程进行模糊控制时,由于对过程的不了解,很难得到合适的控制规则.基于模糊控制器的一种解析结构,提出了将模糊控制器与神经网络相结合的方法.由神经网络对系统进行辨识,并为学习系统提供必要的信息,将控制对象视为神经网络的输出部分,采用BP算法根据神经网络提供的信息对经验规则进行修改,从而改善模糊控制系统动态响应.仿真结果表明该控制器对模型参数变化具有较好的适应能力,能够较快地修改系统的原控制规则,使对象输出较快地跟踪系统的输入.Abstract: When we apply fuzzy control to a unknow process,we can't find good control rule because of we don't know it's characteristics.This paper based on an analytic structure of fuzzy controller put forward a method,which combines fuzzy controller and neural network.Use neural network to make identification of system and provide necessary message for LS.Regard control object as an output part of network.Based on message provided by neural network adopt BP algorithm to modify experience rule.Thus,improve dynamic process of fuzzy control system.Simulation results indicate:this controller has better adaptability for variety of model parameters and can modify original system control rule,makes a output follow system input tracks faster.
-
Key words:
- fuzzy systems /
- adaptive control /
- neural networks
-
1 .王立新自适应模糊系统与控制.北京:国防工业出版社,1995 2. 周昌玉炉温控制及模糊自适应方法的应用研究:[学位论文].北京:北京航空航天大学自动控制系,1997 3. 程相君神经网络原理及其应用.北京:国防工业出版社,1995 4. 谭永红基于BP神经网络的自适应控制.控制理论与应用,1994,11(1):84~87 5. 李 卓基于神经网络的模糊自适应PID控制方法.控制与决策,1996,11(3):340~345 6. Psaltis D,Sideris A,Yamamura.A Multilayered neural network controller.IEEE control systems,1988,8:17~21
点击查看大图
计量
- 文章访问数: 2644
- HTML全文浏览量: 186
- PDF下载量: 694
- 被引次数: 0