Tentative Research for Chaotic Fatigue
-
摘要: 引入非线性动力系统分叉与混沌研究方法,探讨疲劳损伤系统的性质突变.基于物理力学观点,提出了疲劳损伤微观系统模型,定性地分析、讨论了疲劳损伤系统的局部分叉(Hopf分叉)与全局分叉(混沌)机制,给出了系统产生局部分叉时的参数取值范围和产生混沌运动的门槛值.Abstract: The bifurcation and chaos theory of dynamic system is introduced to study the sudden change of fatigue behavior. A micro-model to describe the fatigue damage dynamic system is proposed on the basis of physical mechanics. The local saddle-node, Hopf bifurcations and global bifurcations of this fatigue system are analyzed and discussed. The numerical ranges of the parameters in the fatigue damage dynamic system are presented while Hopf bifurcations occuring by means of the normal form theory and Hopf theorem, and the threshold value of the chaotic fatigue system is given by calculating Melinkov function of the perturbed system according to the unperturbed homoclinic orbits.
-
1. Haugen E B.Probabilistic mechanical design. The University of Arizona, Tucson, Arizona, 1974 2. 卡帕K C,兰伯森 L R.工程设计中的可靠性.张智铁译. 北京:机械工业出版社,1984 3. 高镇同. 疲劳应用统计学. 北京:国防工业出版社,1986 4. Provan W. Probabilistic fracture mechanics and reliability. Dordrecht,Boston:Martinus Nijhoff Publisher, 1987 5. Sobczyk K,Spencer B F. Random fatigue. Boston:Academic Inc, 1982 6. 王 中,高镇同. 随机损伤过程和依赖于时间的损伤概率分布. 力学学报, 1988, 20(6):551~556 7. 熊峻江.混沌疲劳与随机疲劳:[学位论文].北京:北京航空航天大学飞行器设计与应用力学系,1995 8. 切列帕诺夫Г П.脆性断裂力学.黄克智译.北京:科学出版社,1990 9. Guckenheimer J,Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York:Springer-Verlag, 1983[ZK)] 10. [ZK(#]Wiggins S. Introduction to applied nonlinear dynamical systems and chaos. New York:Spring-Verlag,1990 11. John H Hubbard, Beverly H West. Differential equations. New York:Spring-Verlag, 1993 12. Arrowsmith D K, Place C M. Dynamical systems. Cambridge:Cambridge University,1991
点击查看大图
计量
- 文章访问数: 2601
- HTML全文浏览量: 248
- PDF下载量: 734
- 被引次数: 0