留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滤环上微局部化模的正则奇点

周梦

周梦. 滤环上微局部化模的正则奇点[J]. 北京航空航天大学学报, 1998, 24(1): 100-103.
引用本文: 周梦. 滤环上微局部化模的正则奇点[J]. 北京航空航天大学学报, 1998, 24(1): 100-103.
Zhou Meng. Microlocalizations of Modules with Regular Singularities over Filtered Rings[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(1): 100-103. (in Chinese)
Citation: Zhou Meng. Microlocalizations of Modules with Regular Singularities over Filtered Rings[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(1): 100-103. (in Chinese)

滤环上微局部化模的正则奇点

详细信息
  • 中图分类号: O 1533

Microlocalizations of Modules with Regular Singularities over Filtered Rings

  • 摘要: 滤环R上的模在微局部化下的性质是许多文献讨论的问题.Essen证明了Zariski滤环R上的模M若具有正则奇点,则它的微局部化Q\+μ\-S(M)作为Q\+μ\-S(R) 模仍具有正则奇点,但Q\+μ\-S(M)作为R 模是否仍具有正则奇点则不知道.对这一问题进行了讨论,并证明了若M是有正则奇点的R 模且M上的局部滤是良滤,则Q\+μ\-S(M)作为R 模是具正则奇点的模.在一定条件下解决了该问题.

     

  • 1. Essen A V D.Modules with regular singularities over filtered rings and algebraic microlocalization.Lecture Notes in Mathematics 1296,New York:Springer Verlag,1987.384~398 2. Essen A V D.Modules with regular singularities over filtered rings.Publ RIMS Kyoto Univ,1986,22:849~887 3. Nastasescu C,Van Oystaeyen F.Graded ring theory (Math Lib 28).Amsterdam:North Holland,1982 4. Nastasescu C,Van Oystaeyen F.Topics in the theory of graded and filtered rings and modules.Lecture Notes in Mathematics 758,New York:Springer Verlag,1978.259~271 5. Bjork J E.Rings of differential operators (Math Lib 21).Amsterdam:North Holland,1979 6. Bjork J E.The Auslader condition on Noetherian rings.Lecture Notes in Mathematics 1404,New York:Springer Verlag,1989.137~173 7. Asensio M J,Van Bergh M,Van Oystaeyen F.A new algebraic approach to microlocalization of filtered rings.Trans A M S,1989,316(2):537~553
  • 加载中
计量
  • 文章访问数:  2286
  • HTML全文浏览量:  107
  • PDF下载量:  791
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-06-05
  • 网络出版日期:  1998-01-31

目录

    /

    返回文章
    返回
    常见问答