留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吴方法在平面并联机构位置正解中的应用

韩林 张昱 梁崇高

韩林, 张昱, 梁崇高等 . 吴方法在平面并联机构位置正解中的应用[J]. 北京航空航天大学学报, 1998, 24(1): 116-119.
引用本文: 韩林, 张昱, 梁崇高等 . 吴方法在平面并联机构位置正解中的应用[J]. 北京航空航天大学学报, 1998, 24(1): 116-119.
Han Lin, Zhang Yu, Liang Chonggaoet al. Wus Method for Forward Displacement Analysis of the Planar Parallel Mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(1): 116-119. (in Chinese)
Citation: Han Lin, Zhang Yu, Liang Chonggaoet al. Wus Method for Forward Displacement Analysis of the Planar Parallel Mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(1): 116-119. (in Chinese)

吴方法在平面并联机构位置正解中的应用

详细信息
  • 中图分类号: TH 112.1

Wus Method for Forward Displacement Analysis of the Planar Parallel Mechanisms

  • 摘要: 采用吴方法对平面并联机构位置正解问题进行了研究.吴方法是一种求解非线性方程组的数学机械化方法,采用这种方法任何非线性方程组都可以在有限步内得到解决.在给出了吴方法基本原理的基础上,对本问题进行了求解,并将原始方程组转化成为一个三角化的方程组.其中单变量方程的次数为6次,说明平面并联机构可以有6个不同的位姿.最后用数值实例进行了验证,给出了计算结果.吴方法在这一问题中的应用,为求解其它机构学难题提供了新途径.

     

  • 1. Stewart D.A platform with six degree of freedom.Proc Inst Mech Engrs,1965,180(15): 371~386 2. 吴文俊.几何定理机器证明的基本原理.北京:科学出版社,1984 3. Wu W J.A zero structure theorem for polynomial equation-solving.MM Research Preprings,1987,1: 2~13 4. 吴文俊.吴文俊文集.济南:山东教育出版社,1986 5. Karelin V S.Analytical determinate of kinematic characteristics of the plane 4-th-link structural groups.The theory of machines and mechanisms Proceedings of the 7th World Congress,Spain,1987.155~158 6. Merldt J P.Algebraic-geometry tools for the study of kinematics of parallel manipulators.In:Angeles J.Computational Kinematics.Netherlands: Kluwer academic publishers,1993.183~194
  • 加载中
计量
  • 文章访问数:  2390
  • HTML全文浏览量:  165
  • PDF下载量:  1023
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-12-20
  • 网络出版日期:  1998-01-31

目录

    /

    返回文章
    返回
    常见问答