留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非结构三角形网格的一个ENO型有限体积方法

宋松和 陈矛章

宋松和, 陈矛章. 非结构三角形网格的一个ENO型有限体积方法[J]. 北京航空航天大学学报, 1998, 24(6): 718-721.
引用本文: 宋松和, 陈矛章. 非结构三角形网格的一个ENO型有限体积方法[J]. 北京航空航天大学学报, 1998, 24(6): 718-721.
Song Songhe, Chen Maozhang. ENO Finite Volume Method For Unstructured Triangular Mesh[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(6): 718-721. (in Chinese)
Citation: Song Songhe, Chen Maozhang. ENO Finite Volume Method For Unstructured Triangular Mesh[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(6): 718-721. (in Chinese)

非结构三角形网格的一个ENO型有限体积方法

详细信息
  • 中图分类号: O 24182

ENO Finite Volume Method For Unstructured Triangular Mesh

  • 摘要: 基于双曲型守恒律方程,对非结构三角形网格给出了一种ENO(Essentially Nonoscillatory Scheme)型有限体积格式,方法的主要思想是先对每一个三角形单元构造一个加权的二次插值多项式,而在计算交界面的流通量时采用了两点高斯积分公式以保证格式的整体精度,时间离散采用三阶TVD Runge-Kutta方法.最后给出了该格式收敛的数值阶,并对前台阶问题进行了计算.

     

  • 1. Harten A. High resolution schemes for hyperbolic conservation laws. J Comp Phy, 1983,49(3):357~393 2. Harten A, Osher S, Uniformly high order accurate nonoscillatory schemes I. SIAM J Num Anal, 1987,24(2):214~309 3. Harten A, Engquist B,Osher S, et al. Uniformly high order accurate essentially nonoscillatory schemes Ⅲ. J Comp Phy, 1987,71(1):231~303 4. Shu C W, Osher S. Effient implementation of essentially nonoscillatory shock capturing schemes. J Comp Phy, 1988,77(2):439~471 5. Shu C W, Osher S. Effient implementation of essentially nonoscillatory shock capturing schemes Ⅱ. J Comp Phy,1989,83(1):32~78 6. Liu X D, Osher S, Chan T. Weighted essentially nonoscillatory schemes. J Comp Phy, 1994,115(2):200~212 7. Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes. J Comp Phy, 1996,126(2):202~228 8. Abgrall R. On essentially non-oscillatory schemes on unstructured meshes:analysis and implementation. J Comp Phy, 1994,114(1):45~58 9. Durlofsky L J, Engquist B, Osher S. Triangle based adaptive stencil for the solution of hyperbolic conservation laws. J Comp Phy, 1992,98(1):64~73 10. Liu X D. A maximum principle satisfying modification of triangle based adaptive stencils for the solution of scalar hyperbolic conservation laws. SIAM J Numer Anal, 1993,30(3):701~716 11. Song S H, Li Y F. A class of finite volume scheme satisfying maximum principle for 2d scalar hyperbolic conservation laws on unstructured triangular meshes. Chinese J Num Math & Appl,1997,19(4):30~38 12. 宋松和. 非结构网格有限体积方法的研究:[学位论文].北京:中国科学院计算数学与科学工程计算研究所,1996
  • 加载中
计量
  • 文章访问数:  2794
  • HTML全文浏览量:  223
  • PDF下载量:  1064
  • 被引次数: 0
出版历程
  • 收稿日期:  1998-07-02
  • 网络出版日期:  1998-06-30

目录

    /

    返回文章
    返回
    常见问答