留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声发射非线性模型的损伤状态转变的评估

王宏伟 骆红云 韩志远 钟群鹏

王宏伟, 骆红云, 韩志远, 等 . 基于声发射非线性模型的损伤状态转变的评估[J]. 北京航空航天大学学报, 2010, 36(10): 1225-1228.
引用本文: 王宏伟, 骆红云, 韩志远, 等 . 基于声发射非线性模型的损伤状态转变的评估[J]. 北京航空航天大学学报, 2010, 36(10): 1225-1228.
Wang Hongwei, Luo Hongyun, Han Zhiyuan, et al. Change estimation of damage with acoustic emission nonlinear behavior model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10): 1225-1228. (in Chinese)
Citation: Wang Hongwei, Luo Hongyun, Han Zhiyuan, et al. Change estimation of damage with acoustic emission nonlinear behavior model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10): 1225-1228. (in Chinese)

基于声发射非线性模型的损伤状态转变的评估

详细信息
    作者简介:

    王宏伟(1978-),女,山西长子人,博士生,wanghongwei-1978@163.com.

  • 中图分类号: O 341

Change estimation of damage with acoustic emission nonlinear behavior model

  • 摘要: 建立了声发射非线性模型来监测和评估16Mn钢试样在拉伸过程中的损伤状态的转变.首先,建立声发射突变模型,判断试样在拉伸过程中从弹性损伤状态转变为屈服损伤状态可能的时间点.然后,根据声发射参数的特点和突变量的变化,建立声发射突变复检模型,从而得到试样在拉伸过程中从弹性损伤状态转变为屈服损伤状态确切的时间点.试验结果表明:应用声发射非线性模型可以快速、预先预测出材料损伤状态的转变.

     

  • [1] Kim Kibok,Yoon Dongjin,Jeong Jungchae,et al.Determining the stress intensity factor of a material with an artificial neural network from acoustic emission measurements[J].NDT & E International,2004,37:423-429 [2] Berkovits A,Fang Daining.Study of fatigue crack characteristics by acoustic emission[J].Engineering Fracture Mechanics,1995,51(3):401-16 [3] Lawrence M N,Liu S S T.Detection of the onset of fatigue crack growth in rail steels using acoustic emission[J].Bassim Eng Fract Mech,1994,47(2):207-214 [4] Chen H L,Fultineer Jr R D.Study of fatigue cracks in steel bridge components using acoustic emissions[J].Structural Material Technology,1996:317-322 [5] Ji Hongguang,Jia Lihong,Li Zaoding.Grey cusp catastastrophe model of AE parameters and its application in fracture analysis of concrete material[J].Acta Acustica,1996,21(6):935-940 [6] Qin Siqing,Jiao Jiu Jimmy,Wang Sijing,et al.A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of its evolutionary process[J].International Journal of Solids and Structures,2001,38:8093-8109 [7] Weidlich W,Huebner H.Dynamics of political opinion formation including catastrophe theory[J].Journal of Economic Behavior & Organization,2008,67(1):1-26 [8] Henley S.Catastrophe theory models in geology[J].Mathema Geology,1976,8(6):649-655 [9] Sethi V,King R C.An application of the cusp catastrophe model to user information satisfaction[J].Information & Management,1998,34:41-53 [10] 包腾飞.混凝土坝裂缝的混沌特性及分析理论和方法 .南京:河海大学水木结构工程学院,2004 Bao Tengfei.Chaotic characteristics,analysis theories and methods of cracks in concrete dams .Nanjing:School of Mizuki Structural Engineering,HoHai University,2004(in Chinese) [11] Qin Siqing,Jiao Jiu Jimmy,Wang Sijing.A cusp catastrophe model of instability of slip-buckling slope[J].Rock Mechanics and Rock Engineering,2001,34(2):119-134 [12] Dou Wenyu,Ghose Sanjoy.A dynamic nonlinear model of online retail competition using cusp catastrophe theory[J].Journal of Business Research,2006,59:838-848 [13] 王宏伟.声发射监测钢的形变与裂纹扩展行为和技术研究 .北京:北京航空航天大学材料科学与工程学院,2010 Wang Hongwei.Research on deformation and the crack growth of steel by acoustic emission monitoring .Beijing:School of Materials Science and Engineering,Beijing University of Aeronautics and Astronautics,2010(in Chinese)
  • 加载中
计量
  • 文章访问数:  3159
  • HTML全文浏览量:  137
  • PDF下载量:  1202
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-17
  • 网络出版日期:  2010-10-31

目录

    /

    返回文章
    返回
    常见问答