Design of sliding model and dynamic inverse control law for a missile based on RBF neural-networks
-
摘要: 讨论了一种基于径向基函数(RBF,Radial Basic Function)神经网络的导弹滑模动态逆控制律.导弹的基本控制律采用动态逆方法设计,对慢回路设计神经网络滑模控制器以补偿整个控制系统的不确定性.即用RBF神经网络逼近导弹慢模态不确定性的数学模型,并将逼近误差引入到网络权值的调节律以改善系统的动态性能;滑模控制器用于减弱模型不确定性及神经网络的逼近误差对跟踪的影响.所设计的控制器不仅保证了闭环系统的稳定性,而且使模型不确定性及神经网络的逼近误差对跟踪的影响减小到给定的性能指标.最后通过仿真分析,验证了该方法的有效性.Abstract: A radial basic function (RBF) neural networks based sliding model control and dynamic inverse control approach to a missile was presented. The basic control law was designed by dynamic inversion, and neural networks based sliding model and dynamic inverse controller was designed for the slow loop to compensate the uncertainty of the whole control system. The RBF neural networks were used to approximate the uncertainty of slow states model of missile and the approximation errors of the neural networks were introduced to the design of adaptive adjust law to improve the quality of the systems. Sliding model controller was used to attenuate the uncertainty of model and the approximation errors of the neural networks. The controller could guarantee stability of overall system and attenuate effect of uncertainty of model and approximation errors of neural networks to a prescribed level. Finally, simulation results show the effectiveness of the control method.
-
Key words:
- missile /
- dynamic inverse control /
- neural networks /
- sliding model control
-
[1] 曾宪法,张磊,申功璋.基于动态逆和分散控制的导弹控制系统设计[J].北京航空航天大学学报,2007,33(11):1303-1307 Zeng Xianfa,Zhang Lei,Shen Gongzhang.Design of control system for missiles based on dynamic inversion and decentralized control[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(11):1303-1307(in Chinese) [2] 张艳,段朝阳,张平,等.基于动态逆的BTT导弹自动驾驶仪设计[J].北京航空航天大学学报,2007,33(4):422-426 Zhang Yan,Duan Chaoyang,Zhang Ping,el al.BTT missile autopilot design based on dynamic inverseion[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(4):422-426(in Chinese) [3] Chen Chiu-Hsiung,Lin Chih Min,Te Yu Chen.Intelligent adaptive control for MIMO uncertain nonlinear systems[J].Expert Systems with Applications,2008,35(3):865-877 [4] 陈谋,姜长生.基于神经网络的一类非线性系统自适应滑模控制[J].应用科学学报,2004,22(1):76-80 Chen Mou,Jiang Changsheng.Adaptive sliding model control for a class of nonliear system based on neural networks[J].Journal of Applied Sciences,2004,22(1):76-80(in Chinese) [5] Laghrouche S,Smaoui M,Plestan F,et al.Higher order sliding mode control based on optimal approach of an electropneumatic actuator[J].International Journal of Control,2006,79(2):119-131 [6] 姜长生,王从庆,魏海坤,等.智能控制与应用[M].北京:科学出版社,2007:354-409 Jiang Changsheng,Wang Congqing,Wei Haikun,et al.Intelligent control and application[M].Beijing:Science Press,2007:354-409(in Chinese)
点击查看大图
计量
- 文章访问数: 4635
- HTML全文浏览量: 214
- PDF下载量: 1084
- 被引次数: 0