Supercritical airfoil parameterization method feasible to optimum design
-
摘要: 为减少超临界翼型优化中的设计变量,消除优化结果的不光顺现象、保证C2连续,在优化过程中控制翼型几何特性的变化范围,设计出了由4条首尾相接的有理Bézier曲线表示的超临界翼型的翼型参数化方法,该方法对翼型数据的参数化过程中主要运用了Bézier曲线拟合算法与SPSA(Simultaneous Perturbation Stochastic Approximation)优化算法,并在Bézier曲线拟合算法中使用了有别于常用方法的数据点参数选择方法.将这种超临界翼型参数化方法与优化算法结合便可实现翼型优化设计,其中的设计变量为21个,优化结果不仅光顺且满足C2条件,通过设定设计变量变化范围便可控制相应的翼型前缘半径、上下弦最高最低点的位置与曲率、尾部契角等几何特征.Abstract: To reduce the number of design variables in the supercritical airfoil optimization, eliminate the unfairness phenomenon, ensure C2 condition, control the geometric characteristics of the airfoil in the optimization process, a parameterization method for supercritical airfoil based on four rational Bézier curve was presented. In the parametric process to the airfoil data, the Bézier curve approximation algorithm and SPSA(simultaneous perturbation stochastic approximation) algorithm were used and in the Bézier curve approximation algorithm the way to choose the parameter to the data points is different from the common method. Supercritical airfoil shape optimization can be achieved by combining this method with optimization algorithms. It contents 21 design variables, the optimization result is fair and satisfies the C2 condition, the geometric characteristics of the airfoil such as leading edge radius, upper and lower crest location including curvature there, the boattail angle can be controlled in the optimization process by setting the range of the design variables.
-
Key words:
- airfoils /
- curves /
- parameterization /
- optimization
-
[1] 刘周,朱自强,付鸿雁,等.高升阻比翼型的设计[J].空气动力学学报,2004,22(4):410-414 Liu Zhou,Zhu Ziqiang,Fu Hongyan,et al.Design of airfoil with high ratio of lift over drag[J].Acta Aerodynamica Sinica,2004,22(4):410-414(in Chinese) [2] 王晓璐,朱自强,刘周.基于N-S方程的翼型双设计点双目标优化设计[J].北京航空航天大学学报,2006,32(5):503-507 Wang Xiaolu,Zhu Ziqiang,Liu Zhou.Bi-point/bi-objective optimization design of ailfoil using N-S equations[J].Journal of Beijing University of Aeronautics and Astronautics,2006,32(5):503-507(in Chinese) [3] 周涛,张淼,李亚林.基于全速势方程的超临界翼型设计[J].航空计算技术,2009,39(4):58-64 Zhou Tao,Zhang Miao,Li Yalin.Supercritical airfoil design based on full potential equations[J].Aeronautical Computer Technique,2009,39(4):58-64(in Chinese) [4] Khurana M,Winarto H.Application of swarm approach and artificial neural networks for airfoil shape optimization .AIAA-2008-5954,2008 [5] Heine B,Mack S.Aerodynamic scaling of general aviation airfoil for low Reynolds number application .AIAA-2008-4410,2008 [6] Padulo M,Maginot J.Airfoil design under uncertainty with robust geometric parameterization .AIAA-2009-2270,2009 [7] Haderlie J,Crossley W.A parametric approach to supercritical airfoil design optimization .AIAA-2009-6950,2009 [8] Lepine J,Guibault F,Trepanier J Y,et al.Optimized nonuniform rational B-spline geometrical representation for aerodynamic design of wings[J].AIAA,2001,39(11):570-577 [9] Hicks R M,Hennet P A.Wing design by numerical optimization[J].Journal of Aircraft,1978,15(7):407-412 [10] Sobester A,Keane A J.Airfoil design via Cubic splines-ferguson-s curves revisited .AIAA 2007-2881,2007 [11] Song Wenbin,Keane A J.A study of shape parameterization methods for airfoil optimization .AIAA 2003-4482,2004 [12] Harris C D.NASA supercritical airfoils a matrix of family-related airfoils .NASA Technical Paper 2969,1990 [13] Farin G E.Curves and surfaces for computer-aided geometric design[M].4.San Diego:Academic Press,1997:53-56,172-224 [14] Spall J C.Implementation of the simultaneous perturbation algorithm for stochastic optimization[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(3):817-823 [15] Song Qing,Spall J C,Ni Jie.Robust neural network tracking controller using simultaneous perturbation stochastic approximation[J].Neural Networks IEEE Transactions,2008,19(5):817-835
点击查看大图
计量
- 文章访问数: 3718
- HTML全文浏览量: 287
- PDF下载量: 1051
- 被引次数: 0