留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Gram-Schmidt过程的判别变量筛选方法

王惠文 陈梅玲 Gilbert Saporta

王惠文, 陈梅玲, Gilbert Saporta等 . 基于Gram-Schmidt过程的判别变量筛选方法[J]. 北京航空航天大学学报, 2011, 37(8): 958-961.
引用本文: 王惠文, 陈梅玲, Gilbert Saporta等 . 基于Gram-Schmidt过程的判别变量筛选方法[J]. 北京航空航天大学学报, 2011, 37(8): 958-961.
Wang Huiwen, Chen Meiling, Gilbert Saportaet al. Variable selection in discriminant analysis based on Gram-Schmidt process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8): 958-961. (in Chinese)
Citation: Wang Huiwen, Chen Meiling, Gilbert Saportaet al. Variable selection in discriminant analysis based on Gram-Schmidt process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8): 958-961. (in Chinese)

基于Gram-Schmidt过程的判别变量筛选方法

基金项目: 国家自然科学基金资助项目(70771004, 71031001, 70821061)
详细信息
    作者简介:

    王惠文(1957-),女,河北玉田人,教授,wanghw@vip.sina.com.

  • 中图分类号: O 212.4

Variable selection in discriminant analysis based on Gram-Schmidt process

  • 摘要: 利用Gram-Schmidt过程,在自变量集合中选择对判别分类解释性最强的信息,删除对分类无显著解释作用的信息以及重复解释的信息,并把挑选出来的解释变量集合变换成若干直交变量.一方面实现了判别分析模型中的变量筛选,同时也解决了自变量多重共线条件下的有效建模问题.在选入变量的过程中运用F统计量检验变量的判别作用,更容易被统计应用人员所接受.为了说明所提算法的合理性和有效性,以Fisher判别分析建模为例,通过仿真数据建模取得了合理准确的分析结论.

     

  • [1] Chen S,Billings S A,Luo W.Orthogonal least squares methods and their application to non-linear system identification[J].International Journal of Control,1989,50(5):1873-1896 [2] Chen S,Cowan C F N,Grant P M.Orthogonal least squares learning algorithm for radial basis function networks[J].IEEE Transaction on Neural Networks,1991,2(2):302-309 [3] Urbani D,Roussel-Ragot P,Personnaz L,et al.The selection of neural models of nonlinear dynamical systems by statistical tests //Vlontzos J,Hwang J,Wilson E.Neural Networks for Signal Processing IV.Piscataway,NJ:IEEE,1994:229-237 [4] Oussar Y,Dreyfus G.Initialization by selection for wavelet network training[J].Neurocomputing,2000(34):131-143 [5] Vincent P,Bengio Y.Kernel matching pursuit[J].Machine Learning,2001(48):165-187 [6] Stoppiglia H,Dreyfus G,Dubois R,et al.Ranking a random feature for variable and feature selection[J].The Journal of Machine Learning Research,2003(3):1399-1414 [7] Zheng Wenming,Zou Cairong,Zhao Li.Real-time face recognition using Gram-Schmidt orthogonalization for LDA //Proceedings-International Conference on Pattern Recognition.Piscataway,NJ:IEEE,2004:403-406 [8] He Yunhui.Modified generalized discriminant analysis using kernel Gram-Schmidt orthogonalization in difference space for face recognition //Proceedings 2009 2nd International Workshop on Knowledge Discovery and Data Mining.Piscataway,NJ:IEEE,2009:36-39 [9] 王惠文,陈梅玲,Gilbert Saporta.Gram-Schmidt回归及在刀具磨损预报中的应用[J].北京航空航天大学学报,2008,34(6):729-733 Wang Huiwen,Chen Meiling,Gilbert Saporta.Gram-Schmidt regression and application in cutting tool abrasion prediction[J].Journal of Beijing University of Aeronautics and Astronautics,2008,34(6):729-733(in Chinese) [10] Johnson R A,Wichern D W.Applied multivariate statistical analysis[M].6th ed.Beijing:Tsinghua University Press,2008
  • 加载中
计量
  • 文章访问数:  2987
  • HTML全文浏览量:  174
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-13
  • 网络出版日期:  2011-08-30

目录

    /

    返回文章
    返回
    常见问答