High-accuracy frequency estimation algorithm based on autocorrelation and phase difference method
-
摘要: 为提高高斯白噪声背景中正弦信号的频率估计精度,对基于自相关运算的频率估计算法的相关长度m进行了推导,得到了m的优化值与信噪比的关系式.当信噪比较高时,m的最优值为N/3(N为信号采样点数);信噪比较低时,m的最优值为N/2.通过对自相关法及分段FFT(Fast Fourier Transforms)相位差法特性的分析,提出了一种性能更优的频率估计综合算法. Monte Carlo仿真实验表明:新算法吸收了两种算法的优点,克服了其不足,在更大的信噪比范围内具有较高的频率估计精度,且计算量也较小.Abstract: In order to improve the frequency estimation accuracy of sinusoidal signal in white Gaussian noise, the correlation length m of the algorithm based on the autocorrelation operation was derived, and the equation representing the relationship of m and signal-to-noise ratio (SNR) was acquired. Given the data length N, the optimum value of m was N/3 when the SNR was large and it was N/2 when the SNR was small. The performance of segmented-FFT phase difference method and autocorrelation method were analyzed, and a new frequency estimation algorithm was proposed. The Monte Carlo simulation results verify that the new algorithm combines the advantages of the two methods previously mentioned, and avoid the disadvantages of them. It can fetch the highly accurate frequency of a signal in a wide range of SNR, and the computational cost is small.
-
Key words:
- frequency estimation /
- autocorrelation /
- fast Fourier transforms (FFT) /
- error analysis
-
[1] Rife D C,Boorstyn R R.Single-tone parameter estimation from discrete-time observations[J].IEEE Trans on IT,1974,20(5):591-598 [2] Tretter S A.Estimating the frequency of a noisy sinusoid by linear regression[J].IEEE Trans on IT,1985,31(6):832-835 [3] Kay S.A fast and accurate single frequency estimator[J].IEEE Trans on ASSP,1989,37(12):1987-1990 [4] Kim D Y,Narasimha M J.An improved single frequency estimator[J].IEEE Trans on SP,1996,3(7):212-214 [5] Fitz M P.Further results in the fast estimation of a single frequency[J].IEEE Trans on Commun,1994,42(2/3/4):862-864 [6] Völcker B,Hndel P.Frequency estimation from proper sets of correlations[J].IEEE Trans on SP,2002,50(4):791-802 [7] Rosnes E,Vahlin A.Frequency estimation of a single complex sinusoid using a generalized Kay estimator[J].IEEE Trans on Commun,2006,54(3):407-415 [8] 齐国清,吕健.基于自相关函数相位的频率估计方法方差分析[J].大连海事大学学报,2007,33(4):5-9 Qi Guoqing,Lü Jian.Variance analysis on sinusoid frequency estimators based on the argument of the sample autocorrelation function[J].Journal of Dalian Maritime University,2007,33(4):5-9(in Chinese) [9] 陈志菲,孙进才,牛奕龙.基于相干平均的正弦信号频率估计[J].西北工业大学学报,2009,27(3):387-390 Chen Zhifei,Sun Jincai,Niu Yilong.A better method of frequency estimation for sinusoidal signals using coherent average[J].Journal of Northwestern Polytechnical University,2009,27(3):387-390(in Chinese) [10] 张英龙,刘渝,王旭东.基于频偏校正的正弦波频率估计算法[J].南京航空航天大学学报,2007,39(5):597-600 Zhang Yinglong,Liu Yu,Wang Xudong.Sinusoid frequency estimation method based on frequency offset correcting[J].Journal of Nanjing University of Aeronautics & Astronautics,2007,39(5):597-600(in Chinese) [11] 王纪强,欧攀,张春熹,等.基于频偏校正的频率估计算法误差分析[J].北京航空航天大学学报,2010,36(7):849-852 Wang Jiqiang,Ou Pan,Zhang Chunxi,et al.Error analysis of frequency estimation algorithm based on frequency offset correction[J].Journal of Beijing University of Aeronautics and Astronautics,2010,36(7):849-852(in Chinese) [12] 谢明,张晓飞,丁康.频谱分析中用于相位和频率校正的相位差较正法[J].振动工程学报,1999,12(4):454-459 Xie Ming,Zhang Xiaofei,Ding Kang.A phase dfference correction method for phase and frequency correction in spectral analysis[J].Journal of Vibration Engineering,1999,12(4):454-459(in Chinese) [13] 齐国清,贾欣乐.基于DFT 相位的正弦波频率和初相的高精度估计方法[J].电子学报,2001,29(9):1164-1167 Qi Guoqing,Jia Xinle.High-accuracy frequency and phase estimation of single-tone based on phase of DFT[J].Acta Electronica Sinica,2001,29(9):1164-1167(in Chinese)
点击查看大图
计量
- 文章访问数: 3528
- HTML全文浏览量: 114
- PDF下载量: 1074
- 被引次数: 0