留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于预计算和周期性的ECC标量乘法算法

张晓强 朱贵良 王卫苹 王蒙蒙

张晓强, 朱贵良, 王卫苹, 等 . 基于预计算和周期性的ECC标量乘法算法[J]. 北京航空航天大学学报, 2011, 37(11): 1451-1455.
引用本文: 张晓强, 朱贵良, 王卫苹, 等 . 基于预计算和周期性的ECC标量乘法算法[J]. 北京航空航天大学学报, 2011, 37(11): 1451-1455.
Zhang Xiaoqiang, Zhu Guiliang, Wang Weiping, et al. Scalar multiplication algorithm of ECC based on precomputation and periodicity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(11): 1451-1455. (in Chinese)
Citation: Zhang Xiaoqiang, Zhu Guiliang, Wang Weiping, et al. Scalar multiplication algorithm of ECC based on precomputation and periodicity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(11): 1451-1455. (in Chinese)

基于预计算和周期性的ECC标量乘法算法

详细信息
    作者简介:

    张晓强(1983-),男,河南内黄人,博士生,grayqiang@163.com.

  • 中图分类号: TN 918.4

Scalar multiplication algorithm of ECC based on precomputation and periodicity

  • 摘要: 在研究二进制、带符号的二进制(NAF,Non-Adjacent Form)等常见标量乘法算法的基础上,结合椭圆曲线基点的周期特性和预计算倍点序列方式,提出了一种新的标量乘法算法,并给出了新算法的详细步骤.点的周期性和系数决定了直接进行标量乘法运算还是转化为求其逆元,预计算倍点序列方式避免了椭圆曲线密码体制(ECC,Elliptic Curve Cryptosystem)加解密过程中大量的重复运算.为验证算法的正确性,采用密钥长度为192 bit椭圆曲线,给出了一个具体实例.实例结果和算法分析表明:与二进制和NAF算法相比,新算法虽占用了一些存储空间,但省去了倍点运算的时间开销,同时减少了点加的运算次数,极大地提高了标量乘法运算的效率.该算法的提出对完善ECC理论和加快ECC在实际中的应用具有重要意义.

     

  • [1] Yang Feng,Zhong Cheng,Yin Mengxiao,et al.Teaching cryptology course based on theory-algorithm-practice-application mode//Proceedings of the 1st International Workshop on Education Technology and Computer Science.Shanghai:Inst.of Elec and Elec Eng Computer Society,2009:468-470 [2] Koray K,Berkant U.Invalid-curve attacks on (hyper) elliptic curve cryptosystems[J].Advances in Mathematics of Communications,2010,4(3):307-321 [3] 祝跃飞,张亚娟.椭圆曲线公钥密码导引[M].北京:科学出版社,2006:129,219-223 Zhu Yuefei,Zhang Yajuan.Introduction of elliptic curve cyptosystem[M].Beijing:Science Press,2006:129,219-223(in Chinese) [4] Shah P G,Huang Xu,Sharma D.Sliding window method with flexible window size for scalar multiplication on wireless sensor network nodes//Proceedings of the 1st International Conference on Wireless Communication and Sensor Computing.New York:IEEE Computer Society,2010:1-6 [5] Katja S S,Olivier S,Tsuyoshi T.Analysis of fractional window recoding methods and their application to elliptic curve cryptosystems[J].IEEE Transactions on Computers,2006,55(1):48-57 [6] 赵佳,韩臻.自适应的椭圆曲线滑动窗口标量乘法[J].北京交通大学学报,2007,31(2):6-9 Zhao Jia,Han Zhen.Adaptive elliptic curve sliding window scalar multiplication algorithm[J].Journal of Beijing Jiaotong University,2007,31(2):6-9(in Chinese) [7] Shah P G,Huang Xu,Sharma D.lgorithm based on one's complement for fast scalar multiplication in ECC for wireless sensor network//Proceedings of the 24th International Conference on Advanced Information Networking and Applications Workshops.New York:IEEE Computer Society,2010:571-576 [8] Wu Keke,Li Dawei,Li Huiyun,et al.Partitioned computation to accelerate scalar multiplication for elliptic curve cryptosystems//Proceedings of the 15th International Conference on Parallel and Distributed Systems.New York:IEEE Computer Society,2009:551-555 [9] Miller V.Uses of elliptic curves in cryptography//Advances in Cryptology-Crypto'85.Berlin:Springer-Verlag,1985:417-426 [10] Koblitz N.Elliptic curve cryptosystems[J].Mathematics of Computation,1987,48(17):203-209 [11] Stinson D R.Cryptography theory and practice[M].3rd ed.London:Chapman & Hall/CRC Press Taylor & Francis Group,2006:257-258 [12] Diffie W,Hellman M E.New directions in cryptography[J].IEEE Transactions on Information Theory,1976,22(6):644-654 [13] 董付国,厉玉蓉.秦九韶算法思想在RSA密码算法中的应用研究[J].计算机工程与应用,2008,44(28):65-66 Dong Fuguo,Li Yurong.Study on Qin Jiushao algorithm and its application in RSA[J].Computer Engineering and Applications,2008,44(28):65-66(in Chinese)
  • 加载中
计量
  • 文章访问数:  3046
  • HTML全文浏览量:  153
  • PDF下载量:  672
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-02
  • 网络出版日期:  2011-11-30

目录

    /

    返回文章
    返回
    常见问答