Finite element model updating of airplane wing based on Gaussian radial basis function response surface
-
摘要: 用ANSYS三维实体单元SOLID45建立机翼基准有限元模型并计算其自由振动的前6阶模态频率.用均匀设计方法将结构参数分组并分别计算各组结构参数对应的模态频率,建立高斯径向基函数响应面模型.用最小二乘法则拟合系数并检验响应面拟合精度,对基准模型的结构参数施加摄动量建立待修正有限元模型.用响应面模型和基准模型计算所得模态频率的相对误差建立适应度函数的表达式,将混沌搜索机制引入粒子群算法对结构参数的摄动量进行寻优计算,搜索所得优化解代入即得修正后模型,将修正后模型与基准模型在测试频段内段外的模态频率近似度进行比较,证实了修正后模型的有效性.
-
关键词:
- 机翼 /
- 均匀设计 /
- 高斯径向基函数响应面 /
- 混沌搜索机制 /
- 粒子群算法
Abstract: The benchmark finite element model(FEM) of the airplane wing was constituted using the three-dimensional solid element SOLID45 in ANSYS, and the uniform design method was employed to group the structure parameters to calculate the corresponding modal frequencies of each set of parameters, then the Gaussian radial basis function(RBF) response surface was constituted, the coefficients of which were fitted by the least square method(LSM), and the fitting precision was evaluated. The non-updated FEM was obtained by adding perturbation to the structure parameters of the benchmark FEM, and the fitness function was constituted based on the difference between the modal frequencies of the benchmark FEM and the Gaussian radial basis function(RBF) response surface, which guided the particle swarm optimization(PSO) algorithm with chaos-search mechanism to search for the perturbation of the structure parameters, the optimal solution was substituted into the non-updated FEM and then the updated FEM was obtained, the validity of the updated FEM is approved by comparing the similarity of the modal frequencies of the updated FEM and the benchmark FEM in and out of the test range. -
[1] 朱宏平,徐斌,黄玉盈.结构动力模型修正方法的比较研究及评估[J].力学进展,2002,32(4):513-525 Zhu Hongping, Xu Bin, Huang Yuying.Comparison and evaluation of analytical approaches to structural dynamic model correction[J].Advances in Mechanics, 2002,32(4):513-525(in Chinese) [2] Sobieski I P, Kroo I M.Collaborative optimization using response surface estimation[J].AIAA Journal,2000,38(10):1931-1938 [3] Allen M S.Comparison of uncertainty propagation/ response surface techniques for two aeroelastic systems[J].AIAA ,2009,2269: 1-19 [4] Cristianini N, Shawe-Taylor J.An introduction to support vector machines and other kernel-based learning methods[M].London: Cambridge University Press,2000: 112-120 [5] 窦毅芳,刘飞,张为华.响应面建模方法的比较分析[J].工程设计学报,2007,14(5):359-363 Dou Yifang, Liu Fei, Zhang Weihua.Research on comparative analysis of response surface methods[J].Journal of Engineering Design, 2007,14(5):359-363 (in Chinese) [6] 安志国,周杰,赵军,等.基于径向基函数响应面法的板料成形仿真研究[J].系统仿真学报, 2009,21(6):1557-1561 An Zhiguo, Zhou Jie, Zhao Jun,et al.Simulation research for sheet metal forming process based on response surface methodology of radius basis function[J].Journal of System Simulation, 2009, 21(6):1557-1561(in Chinese) [7] Venter G, Sobieszczanski-Sobieski J.Particle swarm optimization[J].AIAA Journal, 2003,41(8): 1583-1589 [8] Chu HoneJay, Chang Liangcheng.Applying particle swarm optimization to parameter estimation of the nonlinear muskingum model[J].Journal of Hydrologic Engineering, 2009, 14(9):1024-1027 [9] Wang Yong, Li Lin, Ni Jun, et al.Form tolerance evaluation of toroidal surfaces using particle swarm optimizaion[J].Journal of Manufacturing Science and Engineering,2009,131:1-9 [10] 孙木楠,史志俊.基于粒子群优化算法的结构模型修改 [J].振动工程学报, 2004, 17(3):350-353 Sun Munan, Shi Zhijun.Structural model updating based on particle swarm optimizaion[J].Journal of Vibration Engineering,2004, 17(3):350-353(in Chinese) [11] 林昆,冯斌,孙俊.混沌量子粒子群优化算法[J].计算机工程与设计,2008,29(10):2610-2612 Lin Kun, Feng Bin, Sun Jun.Chaos quantum-behaved particle swarm optimization algorithm[J].Computer Engineering and Design, 2008,29(10):2610-2612(in Chinese) [12] 方开泰.均匀设计与均匀设计表[M].北京:科学出版社, 1994 Fang Kaitai.Uniform design and uniform design table [M].Beijing:Science Press,1994(in Chinese)
点击查看大图
计量
- 文章访问数: 2934
- HTML全文浏览量: 155
- PDF下载量: 794
- 被引次数: 0