Characteristic and detection of Mars dust
-
摘要: 火星表面尘埃与太阳辐射、热辐射的相互作用直接影响火星大气的结构、热平衡和动力学过程,并会产生改变火星表面反照率和火星地貌的长期效应.火星尘埃环境还对登陆于火星表面的着陆器能源系统和光学载荷等系统构成影响.为此需开展火星大气尘埃的直接就位探测.在介绍了火星的尘埃特性与主要探测方法基础上,提出了采用微质量计技术开展火星表面尘埃就位探测的综合探测器方案.探测器包含3种传感器.尘埃累积传感器通过设置其敏感晶体表面朝上,可以探测火星表面尘埃的沉积质量与速率;荷电尘埃传感器通过加置不同极性的偏置电压,可以探测荷正电尘埃和荷负电尘埃的累积特性;磁尘传感器通过在敏感晶体后加设小型永久磁铁,可以探测磁性尘埃的累积特性.传感器感测质量范围为10-11~10-4g.火星尘埃综合探测器可应用于未来的火星着陆探测计划.Abstract: Mars dust contributes to the Mars atmosphere dynamic and thermodynamic evolution process and the long-term modification of Mars albedo and surface geology.Mars dust environment is very crucial for the power system and optical sensors onboard Mars landers (or rovers).There is a need for Mars dust in situ measurement.The characteristics and main detecting solutions of Mars dust were discussed.Based upon Quartz Crystal Microbalance technology, the design of Mars dust characteristic integrated detecting system (MDCIDS) was proposed.MDCIDS includes 3 kinds of sensors.The dust accumulation sensor can measure the accumulation rate and mass of Mars dust with sensing crystal surface upward.The charging dust sensors can measure the accumulation rate of positive and negative charging dust through applying different bias voltages to crystals.And the magnetic dust sensors can measure the accumulation rate of magnetic dust with small permanent magnets behind sensing crystals.The accumulation mass range is 10-11~10-4g.MDCIDS is expected to be applied to future Mars landing exploration mission.
-
Key words:
- Mars /
- dust /
- in situ measurement /
- quartz crystal microbalance
-
[1] Metzger S M,Carr J R,Johnson J R,et al.Dust devil vortices seen by the Mars pathfinder camera[J].Geophysical Research Letters,1999,26: 2781-2784 [2] Whelley P L,Greeley R.The distribution of dust devil activity on Mars [J].Journal of Geophysical Research,2008,113: E07002 [3] Towner M C.Characteristics of large Martian dust devils using Mars odyssey thermal emission imaging system visual and infrared images [J].Journal of Geophysical Research,2009,114: E02010 [4] Landis G A.Dust obscuration of Mars solar arrays [J].Acta Astronautica,1996,38: 885-891 [5] Cantor B A.MOC observations of the 2001 Mars planet-encircling dust storm [J].Icarus,2007,186(1): 60-96 [6] Sickafoose A A,Colwell J E,Horányi M,et al.Experimental investigation of photoelectric and triboelectric charging of dust [J].Journal of Geophysical Research,2001,106: 8343-8356 [7] Krauss C E,Horányi M,Robertson S,et al.Experimental evidence for electrostatic discharging of dust near the surface of Mars [J].New Journal of Physics,2003,5: 70.1-70.9 [8] Calle C I,Mantovani J G,Buhler C R,et al.Embedded electrostatic sensors for Mars exploration missions [J].Journal of Electrostatics,2004,61: 245-257 [9] Mazumder M K,Saini D,Biris A S,et al.Mars dust: characterization of particle size and electrostatic charge distributions//35th Lunar and Planetary Science Conference,League City,Texas: ,2004 [10] Merrison J P,Gunnlaugsson H P,Kinch K,et al.An integrated laser anemometer and dust accumulator for studying wind-induced dust transport on Mars [J].Planetary and Space Science,2006,54: 1065-1072 [11] Acuna M H,Connerney J E,Ness N F,et al.Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment [J].Science,1999,284: 790-793 [12] Gunnlaugsson H P.Analysis of the magnetic properties Experiment data on Mars: results from Mars pathfinder [J].Planetary and Space Science,2000,48: 1391-1404 [13] Hviid S F,Madsen M B,Gunnlaugsson H P,et al.Magnetic properties experiments on the Mars Pathfinder Lander: preliminary results [J].Science,1997,278:1768-1770 [14] Gunnlaugsson H P,Kinch K M,Madsen M B,et al.Device for measuring surface accumulation of dust: applications for future magnetic properties experiments on Mars [J].Planetary and Space Science,2004,54: 693-698 [15] Tomasko M G,Doose L R,Lemmon M,et al.Properties of dust in the Martian atmosphere from the imager on Mars Pathfinder [J].Journal of Geophysical Research,1999,104: 8987-9007 [16] Greeley R,Arvidson R E,Barlett P W,et al.Gusev crater: wind-related features and processes observed by the Mars Exploration Rover Spirit [J].Journal of Geophysical Research,2006,111: E02S09 [17] Moroz V I,Petrova E V,Ksanfomality L V,et al.Spectrophotometry of Mars in the KRFM experiment of the Phobos mission: some properties of the particles of atmospheric aerosols and the surface [J].Planetary and Space Science,1993,41: 569-585 [18] Drosssart P,Rosenqvist J,Combes M,et al.Martian aerosol properties from the Phobos/ISM experiment [J].Annales Geophysicae,1991,9: 754-760 [19] Moroz V I,Gektin Y M,Naraeva M K,et al.Aerosol vertical profile on Mars from the measurements of thermal radiation near the limb [J].Planetary and Space Science,1994,42: 831-845 [20] Christensen P R,Anderson D L,Chase S C,et al.Results from the Mars global surveyor thermal emission spectrometer [J].Science,1998,279: 1692-1698 [21] Smith M D,Pearl J C,Conrath B J,et al.Mars global surveyor thermal emission spectrometer (TES) observations of dust opacity during aerobraking and science phasing [J].Journal of Geophysical Research,2000,105: 9539-9552 [22] Esposito F,Colangeli L,Corte V D,et al.Physical aspect of an "Impact Sensor" for the detection of cometary dust momentum onboard the "ROSETTA"space mission [J].Advances in Space Research,2002,29: 1159-1163 [23] Battaglia R,Palomba E,Palumbo P,et al.Development of a micro-balance system for dust and water vapour detection in the Mars atmosphere [J].Advances in Space Research,2004,33: 2258-2262 [24] Palumbo P,Battaglia R,Brucato J R,et al.The MAGO experiment for dust environment monitoring on the Martian surface [J].Advances in Space Research,2004,33: 2252-2257
点击查看大图
计量
- 文章访问数: 3184
- HTML全文浏览量: 76
- PDF下载量: 779
- 被引次数: 0