Multi-source knowledge fusion algorithm
-
摘要: 多源知识融合可有效提高判决结果的可靠性和置信度.借鉴信息融合的思路,分析了知识融合方法和一般模型.重点讨论了基于Bayes准则、基于D-S(Dempster-Shafer)证据理论以及基于模糊集理论的知识融合算法,给出了基于3种知识融合算法的具体处理步骤,并从算法特点和适用性、实用性等方面对3种知识融合算法性能进行了对比分析.通过知识融合在合成孔径雷达(SAR,Synthetic Aperture Radar)图像融合中应用的仿真实验,验证了知识融合算法的有效性.Abstract: Multiple source knowledge fusion can effectively enhance the reliability and credibility of the ruling result. In the light of information fusion, methods and general model of knowledge fusion were analyzed, with emphasis on knowledge fusion algorithms based on Bayes rule, Dempster-Shafer(D-S) proof theory and fuzzy sets theory. Explicit processing steps of the algorithms mentioned above were presented, and comparison between which from the perspectives of the characteristics, applicability wend practicability were drawn as well. Finally, the knowledge fusion algorithms based on Bayes theory was introduced into the field of synthetic aperture radar(SAR) image fusions. Simulation results show the effectiveness of the multiple source knowledge fusion algorithms.
-
Key words:
- knowledge fusion /
- Bayes rule /
- D-S evidence theory /
- fuzzy sets
-
[1] Valet L,Mauris G,Bolon Ph,et al.A statistical overview of recent literature in information fusion[J].IEEE Aerospace and Electronic Systems Magazine,2000,16(3):1-14 [2] 王爽,郭军海,张艳,等.导弹目标识别的最小贝叶斯风险分类器[J].现代防御技术,2012,40(1):60-64
Wang Shuang,Guo Junhai,Zhang Yan,et al.Bayes risk classifier for missile targets[J].Modern Defence Technology,2012,40(1):60-64(in Chinese)[3] Dempster A.Upper and lower probabilities induced by multivalued mapping[J].Am Math Statist,1967,38(2):325-339 [4] Shafer G.A mathematical theory of evidence[M].Princeton,NJ:Princeton University Press,1976 [5] Zadeh L A.Fuzzy sets[J].Information and Control,1965,8(3):338-353 [6] 韩立岩,汪培庄.应用模糊数学[M].北京:首都经济贸易大学出版社,1998
Han Liyan,Wang Peizhuang.Applied fuzzy mathematics[M].Beijing:Capital University of Economics and Business,1998(in Chinese)[7] Abdulghafour M,Chandra T,Abidi A.Data fusion through fuzzy logic applied to feature extraction from multi-sensory images//IEEE International Conference on Robotics and Automation.Piscataway,NJ:IEEE,1993:359-366 [8] Sugeno M.Fuzzy measures and fuzzy integrals:a survey//Fuzzy Automata and Decision Processes.Amsterdam:North-Holland,1977:79-86 [9] Tahani H,Keller J M.Information fusion in computer vision using the fuzzy integral[J].IEEE Transactions on Systems,Man,and Cybernetics,1990,20(3):733-741 [10] Yang Baohua,He Ping,Wang Benli.Research on fuzzy model and algorithms for data fusion//Proceedings of the Second International Conference on Machine Learning and Cybernetics.Piscataway,NJ:IEEE,2003:2480-2484 [11] 周芳,韩立岩.多传感器信息融合技术综述[J].遥测遥控,2006,27(3):1-7
Zhou Fang,Han Liyan.A survey of multi-sensor information fusion technology[J].Journal of Telemetry,Tracking and Command,2006,27(3):1-7(in Chinese)[12] 潘泉,于昕,程咏梅,等.信息融合理论的基本方法与进展[J].自动化学报,2004,29(4):599-615
Pan Quan,Yu Xin,Cheng Yongmei,et al.Essential methods and progress of information fusion theory[J].Acta Automatica Sinica,2004,29(4):599-615(in Chinese)[13] Wang Pengbo,Liu Yueshan,Wen Xianzhong,et al.Remote sensing image fusion techniques based on statistical model//2012 IET International Conference on Information Science and Contral Engineering.London:IET,2012:1897-1902
点击查看大图
计量
- 文章访问数: 2001
- HTML全文浏览量: 206
- PDF下载量: 1246
- 被引次数: 0