Attitude stabilization and power compensation control for spacecraft with VSCMGs
-
摘要: 基于变速控制力矩陀螺群动力学模型建立其复合控制方程和分系统解耦约束方程,用矩阵投影方法同步设计得到航天器姿态与能量一体控制复合操纵律,利用Lyapunov方法分析了转子轴向惯量误差对姿态控制分系统的影响.根据飞轮转子轴向惯量与功率输出之间的误差关系设计出功率控制补偿器.复合操纵律中的力矩和功率两解形式相同,约束方程使得姿态与能量控制两分系统解耦,便于进行考虑执行机构特性的闭环控制系统性能分析.考虑飞轮转子轴向惯量误差时,姿态控制分系统的输出耗散特性使其能够保持稳定,而功率控制分系统输出误差与转子轴向惯量误差成比例关系,经过补偿后功率输出能满足控制要求.
-
关键词:
- 航天器姿态控制 /
- 变速控制力矩陀螺群 /
- Lyapunov方法 /
- 功率补偿
Abstract: Based on dynamics model of variable speed control moment gyroscopes (VSCMGs), the mixed control equation plus subsystems- decoupling constraint equation were established. The attitude and energy mixed control steering law was developed synchronously via matrix projection method. Influence of flywheel rotor's moment of inertia error on attitude control subsystem was analyzed by using Lyapunov method. A power control compensator was proposed according to the error relationship between rotor's axial moment of inertia and power output. Torque and power solutions in the mixed steering law possess same forms, while the constraint equation makes the attitude and energy control subsystems decoupled. Performance analysis of closed-loop system considering actuator's characteristic becomes more convenient. Attitude control subsystem with the rotor's inertia error can maintain its stability due to the system's output dissipative property, while output error of energy control subsystem is proportional to the rotor's inertia error. The power output after being compensated can satisfy the control requirement. -
[1] DeVon D A,Fuentes R J.Adaptive attitude control and closed-loop power tracking for an integrated power and attitude control system using variable speed control moment gyroscopes[C]//AIAA Guidance,Navigation,and Control Conference and Exhibit.California USA:AIAA,2005:1-23 [2] 张军,徐世杰.使用VSCMGs的IPACS的奇异性分析与操纵律设计[J].航空学报,2008,29(1):123-130 Zhang Jun,Xu Shijie.Singularity analysis and steering law design of IPACS with VSCMGs[J].Acta Aeronautica et Astronautica Sinica,2008,29(1):123-130(in Chinese) [3] Richie D J,Lappas V J,Wie B.Practical steering law for small satellite energy storage and attitude control[J].Journal of Guidance,Control,and Dynamics,2009,32(6):1898-1911 [4] 刘军,韩潮.使用变速控制力矩陀螺的航天器鲁棒自适应姿态跟踪控制[J].航空学报,2008,29(1):159-164 Liu Jun,Han Chao.Spacecraft adaptive robust attitude tracking control with variable speed control moment gyroscopes[J].Acta Aeronautica et Astronautica Sinica,2008,29(1):159-164(in Chinese) [5] 汤亮,徐世杰.采用变速控制力矩陀螺的航天器自适应姿态跟踪和稳定控制研究[J].航空学报,2006,27(4):663-669 Tang Liang,Xu Shijie.Spacecraft adaptive attitude tracking and stable control with variable speed control moment gyroscopes[J].Acta Aeronautica et Astronautica Sinica,2006,27(4):663-669(in Chinese) [6] 黄喜元,王青,董朝阳.基于归一化神经网络的航天器自适应姿态跟踪控制[J].宇航学报,2010,31(11):2542-2549 Huang Xiyuan,Wang Qing,Dong Chaoyang.Adaptive attitude tracking control for spacecraft based on input normalized neural network[J].Journal of Astronautics,2010,31(11):2542-2549(in Chinese) [7] Yoon H,Tsiotras P.Adaptive spacecraft attitude tracking control with actuator uncertainties[C]//AIAA Guidance,Navigation,and Control Conference and Exhibit.California USA:AIAA,2005:1-12 [8] Lapps V J,Richie D J,Hall D,et al.Survey of technology developments in flywheel attitude control and energy storage systems[J].Journal of Guidance,Control and Dynamics,2009,32(2):354-365 [9] Khalil H K.Nonlinear systems[M].3rd ed.NJ:Prentice Hall,2002
点击查看大图
计量
- 文章访问数: 1941
- HTML全文浏览量: 222
- PDF下载量: 634
- 被引次数: 0