留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种全局的无关线性图嵌入故障特征提取算法

唐荻音 于劲松 陈雄姿 王宏伦

唐荻音, 于劲松, 陈雄姿, 等 . 一种全局的无关线性图嵌入故障特征提取算法[J]. 北京航空航天大学学报, 2013, 39(3): 411-415.
引用本文: 唐荻音, 于劲松, 陈雄姿, 等 . 一种全局的无关线性图嵌入故障特征提取算法[J]. 北京航空航天大学学报, 2013, 39(3): 411-415.
Tang Diyin, Yu Jinsong, Chen Xiongzi, et al. Globality-based uncorrelated linear extension of graph embedding for fault feature extraction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3): 411-415. (in Chinese)
Citation: Tang Diyin, Yu Jinsong, Chen Xiongzi, et al. Globality-based uncorrelated linear extension of graph embedding for fault feature extraction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3): 411-415. (in Chinese)

一种全局的无关线性图嵌入故障特征提取算法

基金项目: 航空科学基金资助项目(20100751010,2010ZD11007)
详细信息
    作者简介:

    唐荻音(1986-),女,湖南长沙人,博士生,amytdy@asee.buaa.edu.cn.

  • 中图分类号: TP183

Globality-based uncorrelated linear extension of graph embedding for fault feature extraction

  • 摘要: 针对故障特征数据维数高、非线性且系统难以建立物理模型的故障诊断问题,提出了一种全局的无关线性图嵌入故障特征提取算法.通过监督学习建立原始特征的关系图,以线性图嵌入为框架进行特征降维.特征的降维过程既保留了同类数据的局部结构,又考虑了异类数据之间的全局分布,同时最大程度地消除了特征之间的统计相关性.在标准故障数据集上的实验结果表明:与已有的经典算法相比,能更有效地提取出故障的典型特征,因而更有利于故障诊断系统训练网络的快速收敛,实现快速、准确的故障诊断.

     

  • [1] Vachtsevanos G,Lewis F,Roemer M,et al.Intelligent fault diagnosis and prognosis for engineering systems [M].New Jersey:John Wiley & Sons,Inc,2006:191-211 [2] Martinez A.PCA versus LDA [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233 [3] Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation [J].Neural Computation,2003,15(6):1373-1396 [4] He X,Cai D,Yan S,et al.Neighborhood preserving embedding [C]//IEEE Proceedings of International Conference on Computer Vision.USA:IEEE Press,2005:1208-1213 [5] Yu J.Bearing performance degradation assessment using locality preserving projections [J].Expert Systems with Applications,2011,38(6):7440-7450 [6] Zhang M,Ge Z,Song Z,et al.Global-local structure analysis model and its application for fault detection and identification [J].Industrial and Engineering Chemistry Research,2011,50(11):6837-6848 [7] Li J,Pan J,Chu S.Kernel class-wise locality preserving projection [J].Information Sciences,2008,178(7):1825-1835 [8] Teoh A,Pang Y.Analysis on supervised neighborhood preserving embedding [J].IEICE Electronics Express,2009,6(23):1631-1637 [9] Yan S,Xu D,Zhang B,et al.A general framework for dimensionality reduction [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-51 [10] Silva E,Cavalcanti G,Ren T.Does the affinity matrix influence the performance of the locality preserving projection algorithm [C]//IEEE Proceedings of International Conference on System Man and Cybernetics.USA:IEEE Press,2010:4168-4175 [11] Frank A,Asuncion A.UCI machine learning repository [DB/OL].Irvine,CA:University of California,2010[2012-02-20].http://archive.ics.uci.edu/ml [12] 杨静宇,金忠,胡钟山.具有统计不相关性的最佳鉴别特征空间的维数定理 [J].计算机学报,2003,26(1):110-115 Yang Jingyu,Jin Zhong,Hu Zhongshan.A theorem on dimensionality of the uncorrelated optimal discriminant feature space [J].Chinese Journal of Computers,2003,26(1):110-115(in Chinese)
  • 加载中
计量
  • 文章访问数:  1769
  • HTML全文浏览量:  269
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-21
  • 网络出版日期:  2013-03-31

目录

    /

    返回文章
    返回
    常见问答