留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子滤波和不确定图的动态系统诊断方法

王冬 李景文 冯文全 朱楠

王冬, 李景文, 冯文全, 等 . 基于粒子滤波和不确定图的动态系统诊断方法[J]. 北京航空航天大学学报, 2013, 39(4): 503-507.
引用本文: 王冬, 李景文, 冯文全, 等 . 基于粒子滤波和不确定图的动态系统诊断方法[J]. 北京航空航天大学学报, 2013, 39(4): 503-507.
Wang Dong, Li Jingwen, Feng Wenquan, et al. Approach based on particle filter and uncertainty graph to diagnosis for dynamic systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 503-507. (in Chinese)
Citation: Wang Dong, Li Jingwen, Feng Wenquan, et al. Approach based on particle filter and uncertainty graph to diagnosis for dynamic systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 503-507. (in Chinese)

基于粒子滤波和不确定图的动态系统诊断方法

基金项目: 航天创新基金资助项目
详细信息
  • 中图分类号: TP 181

Approach based on particle filter and uncertainty graph to diagnosis for dynamic systems

  • 摘要: 在动态系统基于模型诊断中,状态空间大小与元件个数、时间是双指数关系.K-Best枚举方法每个时刻只考虑K个可能性最大的状态,有效减小了枚举空间,但当系统复杂庞大或诊断周期长时,状态更新仍是一项巨大工程.提出一种结合粒子滤波和不确定图的动态系统诊断方法PF_LUG,利用粒子在状态空间的分布近似其概率,并用不确定图标签的反向匹配代替传统的正向轨迹枚举.算法有效解决了由时间导致的计算量增长问题,使时间对复杂度的影响由指数运算降为乘积运算.仿真结果表明该算法的运行时间相对诊断周期线性增长,比K-Best枚举有明显优势.

     

  • [1] Torta G,Torasso P.An on-line approach to the computation and presentation of preferred diagnosis for dynamic systems [J].AI Communications,2007,20:93-116
    [2] Sampath M,Sengupta R,Lafortune S,et al.Diagnosability of discrete-event system [J].Automatic Control,IEEE Transactions on,1995,40(9):1555-1575
    [3] Pencol Y,Cordier M O.A formal framework for the decentralized diagnosis of large scale discrete event systems and its application to telecommunication networks [J].Artificial Intelligence,2005,164(1/2):121-170
    [4] Kurien J,Nayak P.Back to the future for consistency-based trajectory tracking //Proceedings of the 17th AAAI.Austin,Texas:AAAI Press,2000
    [5] Martin O,Ingham M,Williams B.Diagnosis as approximate belief state enumeration for probabilistic concurrent constraint automata //Proceedings of the 20th AAAI.Pittsburgh,Pennsylvania:AAAI Press,2005
    [6] Marseguerra M,Zio E.Monte Carlo simulation for model-based fault diagnosis in dynamic system [J].Reliability Engineering & System Safety,2009,94:180-186
    [7] Li P,Kadirkamanathan V.Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems [J].Systems,Man,and Cybernetics,Part C:Applications and Reviews,IEEE Transactions on,2002,31(3):337-343
    [8] Bryce D,Kambhamptati S,Smith D.Planning graph heuristics for belief space search [J].Journal of Artificial Intelligence Research,2006,26:35-99
    [9] Bryce D,Cushing W,Kambhamptati S.State agnostic planning graphs:deterministic,non-deterministic,and probabilistic planning [J].Artificial Intelligence,2011,175:848-889
    [10] Bryce D,Scalable planning under uncertainty .Downtown Phoenix:Department of Computer Science and Engineering,Arizona State University,2007
  • 加载中
计量
  • 文章访问数:  1508
  • HTML全文浏览量:  222
  • PDF下载量:  471
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-28
  • 网络出版日期:  2013-04-30

目录

    /

    返回文章
    返回
    常见问答