留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

包含引力辅助变轨的三体Lambert问题求解算法

罗钦钦 韩潮

罗钦钦, 韩潮. 包含引力辅助变轨的三体Lambert问题求解算法[J]. 北京航空航天大学学报, 2013, 39(5): 679-682,687.
引用本文: 罗钦钦, 韩潮. 包含引力辅助变轨的三体Lambert问题求解算法[J]. 北京航空航天大学学报, 2013, 39(5): 679-682,687.
Luo Qinqin, Han Chao. Solution algorithm of the three-body lambert problem with gravity assist maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 679-682,687. (in Chinese)
Citation: Luo Qinqin, Han Chao. Solution algorithm of the three-body lambert problem with gravity assist maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 679-682,687. (in Chinese)

包含引力辅助变轨的三体Lambert问题求解算法

基金项目: 国家自然科学基金资助项目(11002008); 国家重点基础研究发展计划资助项目(2009CB723906)
详细信息
  • 中图分类号: V412.4

Solution algorithm of the three-body lambert problem with gravity assist maneuver

  • 摘要: 对包含引力辅助变轨的三体Lambert问题提出了一种数值求解算法,分为转移轨道初始设计和终值搜索两部分.采用伪状态理论,通过简单迭代求解高精度的转移轨道初始设计结果,在此基础之上,通过数值积分在更复杂的摄动环境中,计算精确的转移轨道和一二阶状态转移矩阵,并利用二阶微分修正算法搜索最终解.经过数值算例检验,这种方法具有较高的效率和鲁棒性,可以有效解决三体系统中引力辅助转移轨道的高敏感性问题.

     

  • [1] Battin R H,Vaughan R M.An elegant Lambert algorithm[J].Journal of Guidance,Control and Dynamics,1984,7:662-670
    [2] Bate R,Mueller D,White J.Fundamentals of astrodynamics[M].New York:Dover Publications,1971:177-275
    [3] 韩潮,谢华伟.空间交会中多圈Lambert变轨算法研究[J].中国空间科学技术,2004(5):9-14
    Han Chao,Xie Huawei.Research on algorithm of Loopy lambert transfer in space rendezvous[J].China Space Science Technology,2004(5):9-14 (in Chinese)
    [4] 彭坤,徐世杰.一种无奇异的求解Lambert变轨的普适变量法[J].北京航空航天大学学报,2010,36(4):399-402
    Peng Kun,Xu Shijie.Singularity free universal variables method to solve Lambert transfer[J].Journal of Beijing University of Aeronautics and Astronautics,2010,36(4):399-402 (in Chinese)
    [5] Gooding R H.A procedure for the solution of Lambert's orbital boundary-value problem[J].Celestial Mechanics and Dynamical Astronomy,1990,48:145-165
    [6] Kriz J.A uniform solution of the Lambert problem[J].Celestial Mechanics,1976,14(4):509-513
    [7] Nelson S L.Alternative approach to the solution of Lamberts problem[J].Journal of Guidance,Control,and Dynamics,1992,15(4):1003-1009
    [8] Arlulkar P V,Naik S D.Solution based on dynamical approach for multiple-revolution Lambert problem[J].Journal of Guidance,Control,and Dynamics,2011,34(3):920-923
    [9] Avanzini G.A simple Lambert algorithm[J].Journal of Guidance,Control,and Dynamics,2008,31(6):1587-1594
    [10] He Q,Li J,Han C.Multiple-revolution solutions of the transverse-eccentricity-based Lambert problem[J].Journal of Guidance,Control,and Dynamics,2010,33(1):265-268
    [11] D'Amario L,Bynes D,Sackett L.Optimization of multiple flyby trajectories[C] //AAS/AIAA Astrodynamics Specialists Conference,Provincetown,Mass,AIAA Paper 79-162,1979
    [12] Sukhanov A,Prado A F B A.Lambert problem solution in the Hill model of motion[J].Celestial Mechanics and Dynamical Astronomy,2004,90:331-354
    [13] Jesicak M,Ocampo C.Automated generation of symmetric lunar free-return trajectories[J].Journal of Guidance,Control and Dynamics,2011,34(1):98-106
    [14] Okutsu M,Longuski J.Mars free returns via grivity assist from Venus[J].Journal of Spacecraft and Rockets,2002,39(1): 31-36
    [15] 徐明,谭田,李志武,等.Lambert转移中途修正的全局概率最优策略[J].北京航空航天学报,2012,38(5):574-578
    Xu Ming,Tan Tian,Li Zhiwu,et al.Optimal correction strategy during Lambert transfer from view of probability[J].Journal of Beijing University of Aeronautics and Astronautics,2012, 38(5):574-578(in Chinese)
    [16] Byrnes D V.Application of the pseudostate theory to the three-body Lambert problem[J].Journal of the Astronautical Sciences,1989,37:221-232
    [17] Wilson S W.A pseudostate theory for the approximation of three-body trajectories[R].TRW Note No.60-FMT-765 (11176-H304-R0-00),1969
  • 加载中
计量
  • 文章访问数:  2337
  • HTML全文浏览量:  135
  • PDF下载量:  962
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-10
  • 修回日期:  2013-05-07
  • 网络出版日期:  2013-05-31

目录

    /

    返回文章
    返回
    常见问答