Method to realize path integration based on multi-scale grid cells
-
摘要: 为实现无人作战飞机(UCAV,Unmanned Combat Aerial Vehicle)认知导航的空间方位自主推算,提出了一种基于多尺度网格细胞的路径整合方法.该方法模拟背侧内嗅皮层(dMEC,dorsal Medial Entorhinal Cortex)的相同区域网格细胞放电特征相同、不同区域放电特征递增变化的特点,构建尺度递增的仿生多尺度网格图组,在各层中引入突触样式(synaptic pattern)计算各细胞权值,通过细胞的活跃度变化表征各网格层中位置的变化,并在各层分别实现路径整合,进而利用低尺度整合结果调整高尺度整合,提高空间位置的推算精度.实验结果表明,所提方法在一定的速度误差与方向误差范围内能够精确推算方位,具有较高的空间位置推算精度,并且方向误差值随运动方向变化呈锯齿状分布.Abstract: In order to autonomously reckon location and azimuth for unmanned combat aerial vehicle (UCAV)’s cognitive navigation, a kind of path integration based on multi-scale grid cells was proposed. According to the characteristics of neighboring cells in dorsal medial entorhinal cortex (dMEC) sharing common firing traits, while the firing traits of the grid increases isometrically along the dorsoventral axis, a bionic grid groups with incremental scales was constructed firstly, and then synaptic pattern was introduced in each grid layer to evaluate cell weights, therefore, the location and azimuth in each grid layer were calculated by changeable cell activities, and path integration was ultimately achieved in each grid layer. Space location precision was further improved by using integration results of small scales to adjust the grid layer of bigger scale. Simulation results prove that the method can exactly reckon location and azimuth within certain velocity error and azimuth error. It has a higher space location reckoning by adjusting bigger-scale grid layer. And the azimuth error has an indentation distribution accompanying the moving direction changing.
-
Key words:
- cognitive navigation /
- path integration /
- grid cells /
- multi-scale
-
[1] Hafting T,Fyhn M,Molden S,et al.Microstructure of a spatial map in the entorhinal cortex [J].Nature,2005,436:801-806 [2] Doeller C F,Barry C,Burgess N.Evidence for grid cells in a human memory network [J].Nature,2010,463:656-661 [3] Witter M P,Moser E I.Spatial representation and the architecture of the entorhinal cortex [J].Trends in Neurosciences,2006,29(12):671-678 [4] 牟炜民,赵民涛,李晓鸥.人类空间记忆和空间巡航 [J].心理科学进展,2006,14(4):497-504
Mou Weimin,Zhao Mintao,Li Xiaoou.Human spatial memory and spatial navigation [J].Advances in Psychological Science,2006,14(4):497-504(in Chinese )[5] 于平,徐晖,尹文娟,等.网格细胞在空间记忆中的作用[J].心理科学进展,2009,17(6):1228-1233
Yu Ping,Xu Hui,Yin Wenjuan,et al.The roles of grid cells in spatial memory [J].Advances in Psychological Science,2009,17(6):1228-1233(in Chinese )[6] 吴德伟,邰能建,戚君宜.基于认知理论的UCAV智能导航研究新进展[J].空军工程大学学报:自然科学版,2011,12(4):52-57
Wu Dewei,Tai Nengjian,Qi Junyi.A new research progress of UCAV intelligent navigation based on cognitive theory [J].Journal of Air Force Engineering University:Natural Science Edition,2011,12 (4):52-57(in Chinese )[7] Burgess N,Barry C,O’Keefe J.An oscillatory interference model of grid cell firing [J].Hippocampus,2007,17(9):801-812 [8] Zsófia Huhn,Zoltán Somogyvári,Tamás Kiss,et al.Distance coding strategies based on the entorhinal grid cell system [J].Neural Networks,2009,22(5/6):536-543
点击查看大图
计量
- 文章访问数: 1543
- HTML全文浏览量: 197
- PDF下载量: 877
- 被引次数: 0