留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机传感器故障与部件故障诊断技术

李业波 李秋红 黄向华 赵永平

李业波, 李秋红, 黄向华, 等 . 航空发动机传感器故障与部件故障诊断技术[J]. 北京航空航天大学学报, 2013, 39(9): 1174-1180.
引用本文: 李业波, 李秋红, 黄向华, 等 . 航空发动机传感器故障与部件故障诊断技术[J]. 北京航空航天大学学报, 2013, 39(9): 1174-1180.
Li Yebo, Li Qiuhong, Huang Xianghua, et al. Fault diagnosis for sensors and components of aero-engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9): 1174-1180. (in Chinese)
Citation: Li Yebo, Li Qiuhong, Huang Xianghua, et al. Fault diagnosis for sensors and components of aero-engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9): 1174-1180. (in Chinese)

航空发动机传感器故障与部件故障诊断技术

基金项目: 国家自然科学基金资助项目(51006052);航空科学基金资助项目(20110652003);中央高校基本科研业务费专项基金资助项目(NZ2012104);江苏省2012年度普通高校研究生科研创新计划(CXZZ12_0169)
详细信息
    作者简介:

    李业波(1985-),男,安徽颍上人,博士生,liyebo1985@163.com.

  • 中图分类号: V231.3

Fault diagnosis for sensors and components of aero-engine

  • 摘要: 结合局部学习思想与集成学习技术,提出了一种基于支持向量机-极端学习机-卡尔曼滤波器(SVM-ELM-KF,Support Vector Machine-Extreme Learning Machine-Kalman Filter)的航空发动机传感器故障与突发性部件故障诊断的方法.将改进的迭代约简最小二乘支持向量回归机训练技术推广到分类机中,用于区分传感器故障与部件故障,使得该分类机具有一定的稀疏性.对于传感器故障,利用ELM分类机对故障进行定位.对于部件故障,利用改进的卡尔曼滤波器对发动机各部件的健康参数进行估计,从而对部件故障进行定位.仿真结果表明,提出的故障诊断方法能够准确地区分传感器故障和部件故障,实现故障的有效定位,验证了方法的可行性.

     

  • [1] Garg S.Controls and health management technologies for intelligent aerospace propulsion systems[R].AIAA-2004-0949,2004 [2] Sanjay G.Controls and health management technologies for intelligent aerospace propulsion systems[R].AIAA-2004-0949,2004 [3] Link C.Recent advancements in aircraft engine health management (EHM) technologies and recommendations for next step[R].ASME GT2005-68625,2005 [4] Kobayashi T,Simon D L.Evaluation of an enhanced band of Kalman filters for in-flight aircraft engine fault sensor fault diagnostics[J].Engineering for Gas Turbines and Power,2005,127: 497-504 [5] 覃道亮,何皑,孔祥兴,等.基于UIO的航空发动机控制系统传感器故障诊断[J].航空动力学报,2011,26(6):1396-1404 Tan Daoliang,He Ai,Kong Xiangxing,et al.UIO-based sensor fault diagnosis for aero-engine control systems[J].Journal of Aerospace Power,2011,26(6):1396-1404 (in Chinese) [6] 陈恬,孙健国,郝英.基于神经网络和证据融合理论的航空发动机气路故障诊断[J].航空学报,2006,27(6):1014-1017 Chen Tian,Sun Jianguo,Hao Ying.Neural network and dempster-shafter theory based fault diagnosis for aero-engine gas path[J].Journal of Aerospace Power,2006,27(6):1014-1017(in Chinese) [7] 鲁峰,黄金泉,陈煜,等.基于SPSO-SVR的融合航空发动机传感器故障诊断[J].航空动力学报,2009,24(8):1856-1865 Lu Feng,Huang Jinquan,Chen Yu,et al.Research on performance fault fusion diagnosis of aero-engine component[J].Journal of Aerospace Power,2009,24(8):1856-1865(in Chinese) [8] 仇小杰,黄金泉,鲁峰,等.基于云关联度的航空发动机传感器、部件故障识别系统设计[J].航空动力学报,2011, 26(11):2584-2592 Qiu Xiaojie,Huang Jinquan,Lu Feng,et al.Fault diagnosis system design for the sensors and components of aircraft engine based on cloud relational analysis[J].Journal of Aerospace Power,2011,26(11):2584-2592(in Chinese) [9] Bottou L,Vapnik V.Local learning algorithms[J].Neural Computation,1992,6(4):888-900 [10] Freund Y,Schapire R E.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences,1997,55(1):119-139 [11] Vapnik V.The nature of statical learning theory[M].NewYork,USA:Springer-Verlag,1995 [12] Suykens J A K,Vandewalle J.Least square support vector machine[J].Neural Processing Letters,1999,9(3):293-300 [13] Zhao Yong ping,Sun Jianguo,Du Zhonghua,et al.An improved recursive least square support vector regression[J].Neurocomputing,2012,87:1-9 [14] Huang Guangbin,Zhu Qinyu,Siew C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70:489-501
  • 加载中
计量
  • 文章访问数:  1727
  • HTML全文浏览量:  237
  • PDF下载量:  697
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-17
  • 网络出版日期:  2013-09-30

目录

    /

    返回文章
    返回
    常见问答