Effects of jet injection angle in a flat transverse flow
-
摘要: 采用数值和试验方法研究了射流角度对平板横向射流流动结构和工作特性的影响,将得出的规律应用于射流控制矢量喷管上.在小型风洞试验台上进行试验,用纹影方法来观察实验模型的流场结构,通过静压测点来测量实验模型的壁面压力.研究结果表明:数值与试验结果吻合较好;对平板横向射流,增大射流角度能增大射流上游的分离区,弓形激波位置更靠前,角度增加到一定大小,流场结构变化不再明显;对射流控制矢量喷管进行数值模拟得出,增大射流角度能有效提高喷管的推力矢量性能,在NPR为 4.6,SPR为0.7条件下,射流角度从90°增加到130°,推力矢量性能提高28.3%.Abstract: The computational and experimental studies were conducted to investigate the effects of the jet injection angle on the flat flow structure and its operating characteristics, the conclusions were made to apply on the fluidic control vectoring nozzle. The experiments were performed in a small wind tunnel test bed. The schlieren method was used to observe the flow structure and the wall pressure distribution of the test model was measured by the static pressure measuring point. The results show that the computational and experimental results are in good agreement. Increasing the transverse injection angle can improve the jet upstream of the separation zone, and make the bow shock position closer to the top. However, the change of the flow structure is no longer obvious when the transverse injection angle big enough. The numerical simulation of fluidic control vectoring nozzle indicates that the increase of the transverse injection angle can improve the thrust vectoring performance effectively. To be specific,the thrust vectoring performance raises by 28.3% when the transverse injection angle change from 90° to 130°, on the conditions that NPR equaled 4.6 and SPR equaled 0.7.
-
Key words:
- tansverse injection /
- fluidic control /
- thrust vectoring /
- injection angle /
- schlieren
-
[1] 王永华,李本威,蒋科艺.加装推力矢量喷管对飞机起飞性能影响研究[J].海军航空工程学院学报,2008,23(6):626-628 Wang Yonghua,Li Benwei,Jiang Keyi.Research on take off performance of an aircraft installing thrust-vectoring nozzles[J].Journal of Naval Aeronautical and Astronautically University,2008,23(6):626-628( in Chinese) [2] 曲东才.推力矢量控制技术发展及关键技术分析[J].航空科学技术,2002,1(03):30-33 Qu Dongcai.Development for thrust vector control technology and analysis critical technology[J].Aeronautical Science & Technology,2002,1(03):30-33( in Chinese) [3] Kowal H J.Advances in thrust vectoring and the application of flow-control technology[J].Canadian Aeronautics and Space Journal,2002,48(1):145-151 [4] 罗静,王强,额日其太.两种流体控制矢量喷管内流场计算及分析[J].北京航空航天大学学报,2004, 30(7):597-601 Luo Jing,Wang Qiang,Eriqitai.Computational analysis of two fluidic thrust-vectoring concepts on nozzle flow field[J].Journal of Beijing University of Aeronautics and Astronautics,2004, 30(7) :597-601( in Chinese) [5] 吴盟,额日其太.激波控制矢量喷管流动与工作特性研究[J].燃气涡轮试验与研究,2012,25(1):29-34 Wu Meng,Eriqitai.Research on structure and performance of shock wave control vector nozzle flow field[J].Gas Turbine Experiment and Research,2012,25(1):29-34(in Chinese) [6] Waithe K A,Deere K A.Experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring[R].AIAA-2003-3802,2003 [7] Deere K A.Summary of fluidic thrust vectoring research conducted at nasa langley research center[R].AIAA-2003-3800,2003 [8] Beresh S J,Henfling J F,Erven R J,et al.Stereoscopic piv for crossplane vorticity measurement of a supersonic jet in subsonic compressible crossflow[R].AIAA-2004-2181,2004 [9] Deskman D A,Lu F K.Jet in supersonic crossflow on a flat plate[R].AIAA-2006-3451,2006 [10] Forliti1 D J,Echavarria D I.Thrust vector control using transverse injection and countercurrent shear[R].AIAA-2008-3879,2008 [11] Sadiq M.Performance analysis and flowfield characterization of secondary injection thrust vector control for 2DCD nozzle[D].Los Angeles:Master of Science(Astronautical Engineering),University of Southern California,2007 [12] 吴雄.固体发动机燃气二次喷射理论与试验研究[D].长沙:国防科技大学航天与材料工程学院,2007 Wu Xiong.Theoretical and experimental research on hot gas secondary injection for solid rocket motor[D].Chang Sha:College of Aerospare and Material Engineering,National University of Defense Technology,2007(in Chinese)
点击查看大图
计量
- 文章访问数: 1413
- HTML全文浏览量: 88
- PDF下载量: 612
- 被引次数: 0